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��������� In this paper, we continue our study of the pro-Σ fundamental groups

of configuration spaces associated to a hyperbolic curve, where Σ is either the set of

all prime numbers or a set consisting of a single prime number, begun in an earlier
paper. Our main result may be regarded either as a combinatorial, partially bijective

generalization of an injectivity theorem due to Matsumoto or as a generalization to
arbitrary hyperbolic curves of injectivity and bijectivity results for genus zero curves

due to Nakamura and Harbater-Schneps. More precisely, we show that if one restricts

one’s attention to outer automorphisms of such a pro-Σ fundamental group of the
configuration space associated to a(n) affine (respectively, proper) hyperbolic curve

which are compatible with certain “fiber subgroups” [i.e., groups that arise as ker-

nels of the various natural projections of a configuration space to lower-dimensional
configuration spaces] as well as with certain cuspidal inertia subgroups, then, as one

lowers the dimension of the configuration space under consideration from n + 1 to
n ≥ 1 (respectively, n ≥ 2), there is a natural injection between the resulting groups

of such outer automorphisms, which is a bijection if n ≥ 4. The key tool in the proof

is a combinatorial version of the Grothendieck Conjecture proven in an earlier paper
by the author, which we apply to construct certain canonical sections.
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Introduction

Topological Motivation:

From a classical topological point of view, one way to understand the starting
point of the theory of the present paper is via the Dehn-Nielsen-Baer theorem [cf.,
e.g., [13], Theorem 2.9.B] to the effect that if X is a topological surface of type (g, r)
[i.e., the complement of r distinct points in a compact oriented topological surface
of genus g], then every automorphism α of its [usual topological] fundamental group
πtop

1 (X ) that stabilizes the conjugacy classes of the inertia groups arising from the
r missing points arises from a homeomorphism αX : X ∼→ X .

For n ≥ 1, let us write Xn for the complement of the diagonals in the direct
product of n copies of X . Then one important consequence of the Dehn-Nielsen-
Baer theorem, from the point of view of the present paper [cf., e.g., the proof of
Corollary 5.1, (ii)], is that α extends to a compatible automorphism of πtop

1 (Xn).
Indeed, this follows immediately from the fact that αX induces a homeomorphism
αXn

: Xn ∼→ Xn. Note, moreover, that such an argument is not possible if one only
knows that αX is a homotopy equivalence. That is to say, although a homotopy
equivalence X ∼→ X is, for instance, if r = 0, necessarily surjective, it is not neces-
sarily injective. This possible failure of injectivity means that it is not necessarily
the case that such a homotopy equivalence X → X induces a homotopy equivalence
Xn → Xn.

Put another way, one group-theoretic approach to understanding the Dehn-
Nielsen-Baer theorem is to think of this theorem as a solution to the existence
portion of the following problem:

The Discrete Combinatorial Cuspidalization Problem (DCCP):
Does there exist a natural functorial way to reconstruct πtop

1 (Xn) from
πtop

1 (X )? Is such a reconstruction unique?

At a more philosophical level, since the key property of interest of αX is its injectiv-
ity — i.e., the fact that it separates points — one may think of this problem as the
problem of “reconstructing the points of X , equipped with their natural topology,
group-theoretically from the group πtop

1 (X )”. Formulated in this way, this problem
takes on a somewhat anabelian flavor. That is to say, one may think of it as a sort
of problem in “discrete combinatorial anabelian geometry”.

Anabelian Motivation:

The author was also motivated in the development of the theory of the present
paper by the following naive question that often occurs in anabelian geometry. Let
X be a hyperbolic curve over a perfect field k; U ⊆ X a nonempty open subscheme
of X . Write “π1(−)” for the étale fundamental group of a scheme.
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Naive Anabelian Cuspidalization Problem (NACP): Does there
exist a natural functorial “group-theoretic” way to reconstruct π1(U) from
π1(X)? Is such a reconstruction unique?

For n ≥ 1, write Xn for the n-th configuration space associated to X [i.e., the
open subscheme of the product of n copies of X over k obtained by removing
the diagonals — cf. [24], Definition 2.1, (i)]. Thus, one has a natural projection
morphism Xn+1 → Xn, obtained by “forgetting the factor labeled n+1”. One may
think of this morphism Xn+1 → Xn as parametrizing a sort of “universal family
of curves obtained by removing an effective divisor of degree n from X”. Thus,
consideration of the above NACP ultimately leads one to consider the following
problem.

Universal Anabelian Cuspidalization Problem (UACP): Does there
exist a natural functorial “group-theoretic” way to reconstruct π1(Xn)
from π1(X)? Is such a reconstruction unique?

The UACP was solved for proper X over finite fields in [21], when n = 2, and in [7],
when n ≥ 3. Moreover, when k is a finite extension of Qp [i.e., the field of p-adic
numbers for some prime number p], it is shown in [22], Corollary 1.11, (iii), that
the solution of the UACP for n = 3 when X is proper or for n = 2 when X is affine
is precisely the obstacle to verifying the “absolute p-adic version of Grothendieck
Conjecture” — i.e., roughly speaking, realizing the functorial reconstruction of X
from π1(X). Here, we recall that for such a p-adic k, the absolute Galois group
Gk of k admits automorphisms that do not arise from scheme theory [cf. [30],
the Closing Remark preceding Theorem 12.2.7]. Thus, the expectation inherent
in this “absolute p-adic version of Grothendieck Conjecture” is that somehow the
property of being coupled [i.e., within π1(X)] with the geometric fundamental group
π1(X×k k) [where k is an algebraic closure of k] has the property of rigidifying Gk.
This sort of result is obtained, for instance, in [21], Corollary 2.3, for X “of Belyi
type”. Put another way, if one thinks of the ring structure of k — which, by class
field theory, may be thought of as a structure on the various abelianizations of
the open subgroups of Gk — as a certain structure on Gk which is not necessarily
preserved by automorphisms of Gk [cf. the theory of [15]], then this expectation
may be regarded as amounting to the idea that

this “ring structure on Gk” is somehow encoded in the “gap” that
lies between π1(Xn) and π1(X).

This is precisely the idea that lay behind the development of theory of [22], §1.

By comparison to the NACP, the UACP is closer to the DCCP discussed above.
In particular, consideration of the UACP in this context ultimately leads one to
the following question. Suppose further that Σ is a set of prime numbers which
is either of cardinality one or equal to the set of all prime numbers, and that k is
an algebraically closed field of characteristic zero. Write “πΣ

1 (−)” for the maximal
pro-Σ quotient of “π1(−)”. Note that [unlike the case for more general k] in this
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case, πΣ
1 (Xn), πΣ

1 (X) are independent of the moduli of X [cf., e.g., [24], Proposition
2.2, (v)]. Thus, in this context, it is natural to write Πn

def= πΣ
1 (Xn).

Profinite Combinatorial Cuspidalization Problem (PCCP): Does
there exist a natural functorial “group-theoretic” way to reconstruct Πn
from Π1? Is such a reconstruction unique?

Here, it is important to note that although the PCCP is entirely independent of
k [and hence, in particular, of any Galois group actions], an affirmative answer to
PCCP implies an affirmative answer to UACP [and hence to NACP]. That is to
say:

Despite the apparently purely combinatorial nature of the PCCP, our
discussion above of “ring structures on Gk” suggests that there is quite
substantial arithmetic content in the PCCP.

This anabelian approach to understanding the arithmetic content of the apparently
combinatorial PCCP is interesting in light of the point of view of research on the
Grothendieck-Teichmüller group [cf., e.g., [5]] — which is also concerned with issues
similar to the PCCP [cf. the OPCCP below] and their relationship to arithmetic,
but from a somewhat different point of view [cf. the discussion of “Canonical
Splittings and Cuspidalization” below for more on this topic].

From a more concrete point of view — motivated by the goal of proving
“Grothendieck Conjecture-style results to the effect that π1(−) is fully faithful”
[cf. Remark 4.1.4] — one way to think of the PCCP is as follows.

Out-version of the PCCP (OPCCP): Does there exist a natural sub-
group

Out∗(Πn) ⊆ Out(Πn)

of the group of outer automorphisms of the profinite group Πn such that
there exists a natural homomorphism Out∗(Πn) → Out∗(Πn−1) [hence,
by composition, a natural homomorphism Out∗(Πn) → Out∗(Π1)] which
is bijective?

From the point of view of the DCCP, one natural approach to defining “Out∗”
is to consider the condition of “quasi-speciality” as is done by many authors [cf.
Remarks 4.1.2, 4.2.1], i.e., a condition to the effect that the conjugacy classes of
certain inertia subgroups are preserved. In the theory of the present paper, we take
a slightly different, but related approach. That is to say, we consider the condition
of “FC-admissibility”, which, at first glance, appears weaker than the condition of
quasi-speciality, but is, in fact, almost equivalent to the condition of quasi-speciality
[cf. Proposition 1.3, (vii), for more details]. The apparently weaker nature of FC-
admissibility renders FC-admissibility easier to verify and hence easier to work with
in the development of theory. By adopting this condition of FC-admissibility, we
are able to show that a certain natural homomorphism Out∗(Πn) → Out∗(Πn−1)
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as in the OPCCP is bijective if n ≥ 5, injective if n ≥ 3 when X is arbitrary, and
injective if n ≥ 2 when X is affine [cf. Theorem A below].

Main Result:

Our main result is the following [cf. Corollary 1.10, Theorem 4.1 for more
details]. For more on the relation of this result to earlier work ([10], [29], [32]) in
the pro-l case, we refer to Remark 4.1.2; for more on the relation of this result to
earlier work ([14], [26], [5]) in the profinite case, we refer to Remarks 4.1.3, 4.2.1.

Theorem A. (Partial Profinite Combinatorial Cuspidalization) Let

U → S

be a hyperbolic curve of type (g, r) [cf. §0] over S = Spec(k), where k is an
algebraically closed field of characteristic zero. Fix a set of prime numbers Σ
which is either of cardinality one or equal to the set of all prime numbers. For
integers n ≥ 1, write Un for the n-th configuration space associated to U [i.e.,
the open subscheme of the product of n copies of U over k obtained by removing the
diagonals — cf. [24], Definition 2.1, (i)];

Πn
def= πΣ

1 (Un)

for the maximal pro-Σ quotient of the fundamental group of Un;

OutFC(Πn) ⊆ Out(Πn)

for the subgroup of “FC-admissible” [cf. Definition 1.1, (ii), for a detailed def-
inition; Proposition 1.3, (vii), for the relationship to “quasi-speciality”] outer
automorphisms α — i.e., α that satisfy certain conditions concerning the fiber
subgroups of Πn [cf. [24], Definition 2.3, (iii)] and the cuspidal inertia groups

of certain subquotients of these fiber subgroups. If U is affine, then set n0
def= 2; if

U is proper over k, then set n0
def= 3. Then:

(i) The natural homomorphism

OutFC(Πn) → OutFC(Πn−1)

induced by the projection obtained by “forgetting the factor labeled n” is injective
if n ≥ n0 and bijective if n ≥ 5.

(ii) By permuting the various factors of Un, one obtains a natural inclusion

Sn ↪→ Out(Πn)

of the symmetric group on n letters into Out(Πn) whose image commutes with
OutFC(Πn) if n ≥ n0 and normalizes OutFC(Πn) if r = 0 and n = 2.
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(iii) Write Πtripod for the maximal pro-Σ quotient of the fundamental group
of a tripod [i.e., the projective line minus three points] over k; OutFC(Πn)cusp ⊆
OutFC(Πn) for the subgroup of outer automorphisms which determine outer auto-
morphisms of the quotient Πn � Π1 [obtained by “forgetting the factors of Un with
labels > 1”] that induce the identity permutation of the set of conjugacy classes
of cuspidal inertia groups of Π1. Let n ≥ n0; x a cusp of the geometric generic
fiber of the morphism Un−1 → Un−2 [which we think of as the projection obtained by
“forgetting the factor labeled n− 1”], where we take U0

def= Spec(k). Then x deter-
mines, up to Πn-conjugacy, an isomorph ΠEx

⊆ Πn of Πtripod. Furthermore, this
Πn-conjugacy class is stabilized by any α ∈ OutFC(Πn)cusp; the commensurator
and centralizer of ΠEx

in Πn satisfy the relation CΠn
(ΠEx

) = ZΠn
(ΠEx

) × ΠEx
.

In particular, one obtains a natural outer homomorphism

OutFC(Πn)cusp → OutFC(Πtripod)

associated to the cusp x.

Here, we note in passing that, by combining the “group-theoreticity of the
isomorph of the tripod fundamental group” given in Theorem A, (iii), with the
injectivity of Theorem A, (i), one obtains an alternative proof of [14], Theorem 2.2
— cf. Remark 4.1.3.

In §1, we discuss various generalities concerning étale fundamental groups of
configuration spaces, including Theorem A, (iii) [cf. Corollary 1.10]. Also, we prove
a certain special case of the injectivity of Theorem A, (i), in the case of a tripod [i.e.,
a projective line minus three points] — cf. Corollary 1.12, (ii). In §2, we generalize
this injectivity result to the case of degenerating affine curves [cf. Corollary 2.3,
(ii)]. In §3, we show that similar techniques allow one to obtain a corresponding
surjectivity result [cf. Corollary 3.3], under certain conditions, for affine curves with
two moving cusps. In §4, we combine the results shown in §1, §2, §3 to prove the
remaining portion of Theorem A [cf. Theorem 4.1] and discuss how the theory of
the present paper is related to earlier work [cf. Corollary 4.2; Remarks 4.1.2, 4.1.3,
4.2.1]. Finally, in §5, we observe that a somewhat stronger analogue of Theorem
4.1 can be shown for the corresponding discrete [i.e., usual topological] fundamental
groups [cf. Corollary 5.1].

Canonical Splittings and Cuspidalization:

We continue to use the notation of the discussion of the PCCP. In some sense,
the fundamental issue involved in the PCCP is the issue of how to bridge the gap
between Π2 and Π1×Π1. Here, we recall that there is a natural surjection Π2 � Π1×
Π1. If we consider fibers over Π1, then the fundamental issue may be regarded as the
issue of bridging the gap between Π2/1

def= Ker(Π2 � Π1) [where the surjection is
the surjection obtained by projection to the first factor; thus, the projection to the
second factor yields a surjection Π2/1 � Π1] and Π1 [i.e., relative to the surjection
Π2/1 � Π1].
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If one thinks of Π2/1 as πΣ
1 (X\{ξ}) for some closed point ξ ∈ X(k), then there

is no natural splitting of the surjection Π2/1 � Π1. On the other hand, suppose that
X is an affine hyperbolic curve, and one takes “X\{ξ}” to be the pointed stable log
curve Z log [over, say, a log scheme Slog obtained by equipping S def= Spec(k) with the
pro-fs log structure determined by the monoid Q≥0 of nonnegative rational numbers
together with the zero map Q≥0 → k — cf. §0] obtained as the “limit” ξ → x,
where x is a cusp of X . Thus, Z consists of two irreducible components, E and
F , where F may be identified with the canonical compactification of X [so X ⊆ F
is an open subscheme], E is a copy of the projective line joined to F at a single
node ν, and the marked points of Z consist of the points �= ν of F\X and the two
marked points �= ν of E. Write UE ⊆ E, (X =) UF ⊆ F for the open subschemes
obtained as the complement of the nodes and cusps; Y log for the pointed stable log
curve obtained from Z log by forgetting the marked point of E ⊆ Z determined by
the “limit of ξ” [so we obtain a natural map Z log → Y log; X may be identified with
the complement of the marked points of Y ]. Thus, by working with logarithmic
fundamental groups [cf. §0], one may identify the surjection “Π2/1 � Π1” with the
surjection πΣ

1 (Z log)� πΣ
1 (Y log) ∼= πΣ

1 (X). Then the technical starting point of the
theory of the present paper may be seen in the following observation:

The natural outer homomorphism

Π1 = πΣ
1 (X) ∼= πΣ

1 (UF ) ∼= πΣ
1 (UF ×Z Z log) → πΣ

1 (Z log) = Π2/1

determines a “canonical splitting” of the surjection πΣ
1 (Z log) = Π2/1 �

πΣ
1 (Y log) ∼= πΣ

1 (X) = Π1.

Put another way, from the point of view of “semi-graphs of anabelioids” determined
by pointed stable curves [cf. the theory of [20]], this canonical splitting is the
splitting determined by the “verticial subgroup” (πΣ

1 (UF ) ∼=) ΠF ⊆ πΣ
1 (Z log) = Π2/1

corresponding to the irreducible component F ⊆ Z. From this point of view,
one sees immediately that Π2/1 is generated by ΠF and the verticial subgroup
(πΣ

1 (UE) ∼=) ΠE ⊆ Π2/1 determined by E. Thus:

The study of automorphisms of Π2/1 that preserve ΠE , ΠF , are com-
patible with the projection Π2/1 � Π1 [which induces an isomorphism
ΠF

∼→ Π1], and induce the identity on Π1 may be reduced to the study of
automorphisms of ΠE .

Moreover, by the “combinatorial version of the Grothendieck Conjecture” — i.e.,
“combGC” — of [20], it follows that one sufficient condition for the preservation
of [the conjugacy classes of] ΠE , ΠF is the compatibility of the automorphisms
of Π2/1 under consideration with the outer action of the inertia group that arises
from the degeneration “ξ → x”. On the other hand, since this inertia group is
none other than the inertia group of the cusp x in Π1, and the automorphisms of
Π2/1 under consideration arise from automorphisms of Π2, hence are compatible
with the outer action of Π1 on Π2/1 determined by the natural exact sequence
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1 → Π2/1 → Π2 → Π1 → 1, it thus follows that the automorphisms of Π2/1 that we
are interested in do indeed preserve [the conjugacy classes of] ΠE , ΠF , hence are
relatively easy to analyze. Thus, in a word:

The theory of the present paper may be regarded as an interesting appli-
cation of the combGC of [20].

This state of affairs is notable for a number of reasons — which we shall discuss
below — but in particular since at the time of writing, the author is not aware of
any other applications of “Grothendieck Conjecture-type” results.

ν

X

canonical
splitting

ξ

x

E F

In light of the central importance of the “canonical splitting determined by
the combGC” in the theory of the present paper, it is interesting to compare the
approach of the present paper with the approaches of other authors. To this end,
let us first observe that since the canonical splitting was originally constructed
via scheme theory, it stands to reason that if, instead of working with “arbitrary
automorphisms” as in the OPCCP, one restricts one’s attention to automorphisms
that arise from scheme theory, then one does not need to apply the combGC. This,
in effect, is the situation of [14]. That is to say:

The “canonical splitting determined by the combGC” takes the
place of — i.e., may be thought of as a sort of “combinatorial substi-
tute” for — the property of “arising from scheme theory”.
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Here, it is important to note that it is precisely in situations motivated by problems
in anabelian geometry that one must contend with “arbitrary automorphisms that
do not necessarily arise from scheme theory”. As was discussed above, it was this
sort of situation — i.e., the issue of studying the extent to which the ring structure of
the base field is somehow group-theoretically encoded in the “gap” that lies between
Πn and Π1 — that motivated the author to develop the theory of the present paper.

Next, we observe that the “canonical splitting determined by the combGC” is
not necessary in the theory of [5], precisely because the automorphisms studied in [5]
are assumed to satisfy a certain symmetry condition [cf. Remark 4.2.1, (iii)]. This
symmetry condition is sufficiently strong to eliminate the need for reconstructing
the canonical splitting via the combGC. Here, it is interesting to note that this sym-
metry condition that occurs in the theory of the Grothendieck-Teichmüller group
is motivated by the goal of “approximating the absolute Galois group GQ of Q via
group theory”. On the other hand, in situations motivated by anabelian geometry
— for instance, involving hyperbolic curves of arbitrary genus — such symmetry
properties are typically unavailable. That is to say, although both the point of
view of the theory of the Grothendieck-Teichmüller group, on the one hand, and
the absolute anabelian point of view of the present paper, on the other, have the
common goal of “unraveling deep arithmetic properties of arithmetic fields [such as
Q, Qp] via their absolute Galois groups”, these two points of view may be regarded
as going in opposite directions in the sense that:

Whereas the former point of view starts with the rational number field
Q “as a given” and has as its goal the explicit construction and doc-
umentation of group-theoretic conditions [on Out(Π1), when (g, r) =
(0, 3)] that approximate GQ, the latter point of view starts with the ring
structure of Qp “as an unknown” and has as its goal the study of the
extent to which the “ring structure on GQp

may be recovered from an arbi-
trary group-theoretic situation which is not subject to any restricting
conditions”.

Finally, we conclude by observing that, in fact, the idea of “applying anabelian
results to construct canonical splittings that are of use in solving various cuspidal-
ization problems” — i.e.,

Grothendieck
Conjecture-type result �

canonical
splitting �

application to
cuspidalization

— is not so surprising, in light of the following earlier developments [all of which
relate to the first “�”; the second and third [i.e., (A2), (A3)] of which relate to the
second “�”]:
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(A1) Outer Actions on Center-free Groups: If 1 → H → E → J → 1 is
an exact sequence of groups, andH is center-free, then E may be recovered

from the induced outer action of J on H as “H
out
� J” — i.e., as the pull-

back via the resulting homomorphism J → Out(H) of the natural exact
sequence 1 → H → Aut(H) → Out(H) → 1 [cf. §0]. That is to say, the
center-freeness of H — which may be thought of as the most primitive
example, i.e., as a sort of “degenerate version”, of the property of being
“anabelian” — gives rise to a sort of “anabelian semi-simplicity” in the

form of the isomorphism E
∼→ H

out
� J . This “anabelian semi-simplicity”

contrasts sharply with the situation that occurs when H fails to be center-
free, in which case there are many possible isomorphism classes for the
extension E. Perhaps the simplest example of this phenomenon — namely,
the extensions

1 → p · Z → Z → Z/pZ → 1 and

1 → p · Z → (p · Z) × (Z/pZ) → Z/pZ → 1

[where p is a prime number] — suggests strongly that this phenomenon
of “anabelian semi-simplicity” has substantial arithmetic content [cf., e.g.,
the discussion of [19], Remark 1.5.1] — i.e., it is as if, by working with
center-free groups [such as free or pro-Σ free groups], one is afforded with
“canonical splittings of the analogue of the extension 1 → p · Z → Z →
Z/pZ → 1”!

(A2) Elliptic and Belyi cuspidalizations [cf. [22], §3]: In this theory
one constructs cuspidalizations of a hyperbolic curve X by interpreting
either a “multiplication by n” endomorphism of an elliptic curve or a Belyi
map to a projective line minus three points as, roughly speaking, an open
immersion Y ↪→ X of a finite étale covering Y → X of X . This diagram
X ←↩ Y → X may be thought of as a sort of “canonical section”;
moreover, this canonical section is constructed group-theoretically in loc.
cit. precisely by applying the main [anabelian] result of [16].

(A3) Cuspidalization over Finite Fields: Anabelian results such as the
main result of [16] have often been referred to as “versions of the Tate
Conjecture [concerning abelian varieties] for hyperbolic curves”. Over fi-
nite fields, the “Tate Conjecture” is closely related to the “Riemann hy-
pothesis” for abelian varieties over finite fields, which is, in turn, closely
related to various semi-simplicity properties of the Tate module [cf. the
theory of [25]]. Moreover, such semi-simplicity properties arising from
the “Riemann hypothesis” for abelian varieties play a key role — i.e., in
the form of canonical splittings via weights — in the construction of
cuspidalizations over finite fields in [21], [7].

(A4) The Mono-anabelian Theory of [23]: If one thinks of “canonical
splittings” as “canonical liftings”, then the idea of “applying anabelian
geometry to construct canonical liftings” permeates the theory of [23] [cf.,
especially, the discussion of the Introduction to [23]].
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Section 0: Notations and Conventions

Topological Groups:

If G is a center-free topological group, then we have a natural exact sequence

1 → G→ Aut(G) → Out(G) → 1

— where Aut(G) denotes the group of automorphisms of the topological group G;
the injective [since G is center-free!] homomorphism G → Aut(G) is obtained by
letting G act on G by inner automorphisms; Out(G) is defined so as to render the
sequence exact. If J → Out(G) is a homomorphism of groups, then we shall write

G
out
� J

def= Aut(G) ×Out(G) J

for the “outer semi-direct product of J with G”. Thus, we have a natural exact

sequence: 1 → G→ G
out
� J → J → 1.

If H ⊆ G is a closed subgroup of a topological group G, then we shall use
the notation ZG(H), NG(H), CG(H) to denote, respectively, the centralizer, the
normalizer, and commensurator ofH inG [cf., e.g., [20], §0]. IfH = NG(H) (respec-
tively, H = CG(H)), then we shall say that H is normally terminal (respectively,
commensurably terminal) in G.

Log Schemes:

When a scheme appears in a diagram of log schemes, the scheme is to be
understood as a log scheme equipped with the trivial log structure. If X log is a log
scheme, then we shall denote its interior — i.e., the largest open subscheme over
which the log structure is trivial — by UX . Fiber products of (pro-)fs log schemes
are to be understood as fiber products taken in the category of (pro-)fs log schemes.

The Étale Fundamental Group of a Log Scheme:

Throughout the present paper, we shall often consider the étale fundamental
group of a connected fs noetherian log scheme [cf. [11]; [6], Appendix B], which
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we shall denote “π1(−)”; we shall denote the maximal pro-Σ quotient of “π1(−)”
by “πΣ

1 (−)”. The theory of the “π1(−)” of a connected fs noetherian log scheme
extends immediately to connected pro-fs noetherian log schemes; thus, we shall
apply this routine extension in the present paper without further mention.

Recall that if X log is a log regular, connected log scheme of characteristic
zero [i.e., there exists a morphism X → Spec(Q)], then the log purity theorem
of Fujiwara-Kato asserts that there is a natural isomorphism

π1(X log) ∼→ π1(UX)

[cf., e.g., [11]; [17], Theorem B].

Let Slog
◦ be a log regular log scheme such that S◦ = Spec(R◦), where R◦

is a complete noetherian local ring of characteristic zero with algebraically closed
residue field k◦. Write K◦ for the quotient field of R◦. Let K be a maximal
algebraic extension of K◦ among those algebraic extensions that are unramified
over R◦. Write R ⊆ K for the integral closure of R◦ in K; S def= Spec(R). Then
by considering the integral closure of R◦ in the various finite extensions of K◦
in K, one obtains a log structure on S such that the resulting log scheme Slog

may be thought of as a pro-fs log scheme corresponding to a projective system of
log regular log schemes in which the transition morphisms are [by the log purity
theorem] finite Kummer log étale. Write k for the residue field of R [so k ∼= k◦];
slog◦

def= Spec(k◦) ×S◦ S
log
◦ ; slog def= Spec(k) ×S Slog.

Next, let
X log

◦ → Slog
◦

be a proper, log smooth morphism; write

X log def= X log
◦ ×Slog

◦
Slog → Slog

X log
◦s

def= X log
◦ ×Slog

◦
slog◦ → slog◦ ; X log

s
def= X log

◦ ×Slog
◦
slog → slog

for the result of base-changing via the morphisms Slog → Slog
◦ , slog◦ → Slog

◦ ,
slog → Slog

◦ . Then by [33], Théorème 2.2, (a) [in the case where S◦ is a trait];
[6], Corollary 1 [for the general case], we have a natural “specialization isomor-
phism” π1(X

log
◦s ) ∼→ π1(X

log
◦ ). We shall also refer to the composite isomorphism

π1(X
log
◦s ) ∼→ π1(X

log
◦ ) ∼→ π1(UX◦) [where the second isomorphism arises from the

log purity theorem] as the “specialization isomorphism”. By applying these special-
ization isomorphisms to the result of base-changing X log

◦ → Slog
◦ to the various log

regular log schemes that appear in the projective system [discussed above] associ-
ated to the pro-fs log scheme Slog, we thus obtain “specialization isomorphisms”

π1(X log
s ) ∼→ π1(X log) ∼→ π1(UX)

for X log → Slog. Here, we note that if K is any algebraic closure of K, and the
restriction of X log

◦ → Slog
◦ to US◦ is a log configuration space associated to some
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family of hyperbolic curves over US◦ [cf. [24], Definition 2.1, (i)], then we have a
natural isomorphism

π1(UX) ∼→ π1(UX ×K K)

[cf. [24], Proposition 2.2, (iii)]. We shall also refer to the composite isomorphism
π1(X log

s ) ∼→ π1(UX ×K K) as the “specialization isomorphism”.

Curves:

We shall use the terms hyperbolic curve, cusp, stable log curve, and smooth log
curve as they are defined in [20], §0. Thus, the interior of a smooth log curve over
a scheme determines a family of hyperbolic curves over the scheme. A smooth log
curve or family of hyperbolic curves of type (0, 3) will be referred to as a tripod.
We shall use the terms n-th configuration space and n-th log configuration space as
they are defined in [24], Definition 2.1, (i). If g, r are positive integers such that
2g − 2 + r > 0, then we shall write Mlog

g,r for the moduli stack Mg,r of pointed
stable curves of type (g, r) over [the ring of rational integers] Z equipped with the
log structure determined by the divisor at infinity. Here, we assume the marking
sections of the pointed stable curves to be ordered. The interior of Mlog

g,r will be
denoted Mg,r.

Section 1: Generalities and Injectivity for Tripods

In the present §1, we begin by discussing various generalities concerning the
various log configuration spaces associated to a hyperbolic curve. This discussion
leads naturally to a proof of a certain special case [cf. Corollary 1.12, (ii)] of our
main result [cf. Theorem 4.1 below] for tripods [cf. §0].

Let S def= Spec(k), where k is an algebraically closed field of characteristic zero,
and

X log → S

a smooth log curve of type (g, r) [cf. §0]. Fix a set of prime numbers Σ which is
either of cardinality one or equal to the set of all prime numbers.

Definition 1.1. Let n ≥ 1 be an integer.

(i) Write X log
n for the n-th log configuration space associated to [the family of

hyperbolic curves determined by] X log [cf. §0]; X log
0

def= S. We shall think of the
factors of X log

n as labeled by the indices 1, . . . , n. Write

X log
n → X log

n−1 → . . .→ X log
m → . . .→ X log

2 → X log
1
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for the projections obtained by forgetting, successively, the factors labeled by indices
> m [as m ranges over the positive integers ≤ n]. Write

Πn
def= πΣ

1 (X log
n )

for the maximal pro-Σ quotient of the fundamental group of the log scheme X log
n [cf.

§0; the discussion preceding [24], Definition 2.1, (i)]. Thus, we obtain a sequence
of surjections

Πn � Πn−1 � . . .� Πm � . . .� Π2 � Π1

— which we shall refer to as standard. If we write Km
def= Ker(Πn � Πm), Π0

def=
{1}, then we obtain a filtration of subgroups

{1} = Kn ⊆ Kn−1 ⊆ . . . ⊆ Km ⊆ . . . ⊆ K2 ⊆ K1 ⊆ K0 = Πn

— which we shall refer to as the standard fiber filtration on Πn. Also, for nonneg-
ative integers a ≤ b ≤ n, we shall write

Πb/a
def= Ka/Kb

— so we obtain a natural injection Πb/a ↪→ Πn/Kb
∼= Πb. Thus, if m is a positive

integer ≤ n, then we shall refer to Πm/m−1 as a standard-adjacent subquotient of
Πn. The standard-adjacent subquotient Πm/m−1 may be naturally identified with
the maximal pro-Σ quotient of the étale fundamental group of the geometric generic
fiber of the morphism on interiors UXm

→ UXm−1 . Since this geometric generic fiber
is a hyperbolic curve of type (g, r+m− 1), it makes sense to speak of the cuspidal
inertia groups — each of which is [noncanonically!] isomorphic to the maximal
pro-Σ quotient ẐΣ of Ẑ — of a standard-adjacent subquotient.

(ii) Let
α : Πn

∼→ Πn

be an automorphism of the topological group Πn. Let us say that α is C-admissible
[i.e., “cusp-admissible”] if α(Ka) = Ka for every subgroup appearing in the stan-
dard fiber filtration, and, moreover, α induces a bijection of the collection of cuspidal
inertia groups contained in each standard-adjacent subquotient of the standard fiber
filtration. Let us say that α is F-admissible [i.e., “fiber-admissible”] if α(H) = H
for every fiber subgroup H ⊆ Πn [cf. [24], Definition 2.3, (iii), as well as Remark
1.1.2 below]. Let us say that α is FC-admissible [i.e., “fiber-cusp-admissible”] if α is
F-admissible and C-admissible. If α : Πn

∼→ Πn is an FC-admissible automorphism,
then let us say that α is a DFC-admissible [i.e., “diagonal-fiber-cusp-admissible”] if
α induces the same automorphism of Π1 relative to the various quotients Πn � Π1

by fiber subgroups of co-length 1 [cf. [24], Definition 2.3, (iii)]. If α : Πn
∼→ Πn

is a DFC-admissible automorphism, then let us say that α is an IFC-admissible
automorphism [i.e., “identity-fiber-cusp-admissible”] if α induces the identity au-
tomorphism of Π1 relative to the various quotients Πn � Π1 by fiber subgroups
of co-length 1. Write Aut(Πn) for the group of automorphisms of the topological
group Πn;

AutIFC(Πn) ⊆ AutDFC(Πn) ⊆ AutFC(Πn) ⊆ AutF(Πn) ⊆ Aut(Πn) ⊇ Inn(Πn)
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for the subgroups of F-admissible, FC-admissible, DFC-admissible, IFC-admissible,
and inner automorphisms;

OutFC(Πn)
def= AutFC(Πn)/Inn(Πn) ⊆ OutF(Πn)

def= AutF(Πn)/Inn(Πn) ⊆ Out(Πn)

for the corresponding outer automorphisms. Thus, we obtain a natural exact se-
quence

1 → AutIFC(Πn) → AutDFC(Πn) → Aut(Π1)

induced by the standard surjection Πn � Π1 of (i).

(iii) Write
Ξn ⊆ Πn

for the intersection of the various fiber subgroups of co-length 1. Thus, we obtain a
natural inclusion

Ξn ↪→ AutIFC(Πn)

induced by the inclusion Ξn ⊆ Πn
∼→ Inn(Πn) ⊆ Aut(Πn) [cf. Remark 1.1.1 below].

(iv) By permuting the various factors of X log
n , one obtains a natural inclusion

Sn ↪→ Out(Πn)

of the symmetric group on n letters into Out(Πn). We shall refer to the elements
of the image of this inclusion as the permutation outer automorphisms of Πn, and
to elements of Aut(Πn) that lift permutation outer automorphisms as permutation
automorphisms of Πn. Write

OutFCP(Πn) ⊆ OutFC(Πn)

for the subgroup of outer automorphisms that commute with the permutation outer
automorphisms.

(v) We shall append the superscript “cusp” to the various groups of FC-
admissible [outer] automorphisms discussed in (ii), (iv) to denote the subgroup
of FC-admissible [outer] automorphisms that determine [via the standard surjec-
tion Πn � Π1 of (i)] an [outer] automorphism of Π1 that induces the identity
permutation of the set of conjugacy classes of cuspidal inertia groups of Π1.

(vi) When (g, r) = (0, 3), we shall write Πtripod def= Π1, Πtripod
n

def= Πn. Suppose
that (g, r) = (0, 3), and that the cusps of X log are labeled a, b, c. Here, we regard
the symbols {a, b, c, 1, 2, . . . , n} as equipped with the ordering a < b < c < 1 < 2 <
. . . < n. Then, as is well-known, there is a natural isomorphism over k

X log
n

∼→ (Mlog

0,n+3)k

— where we write (Mlog

0,n+3)k for the moduli scheme over k of pointed stable curves
of type (0, n+3), equipped with its natural log structure [cf. §0]. [Here, we assume
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the marking sections of the pointed stable curves to be ordered.] In particular, there
is a natural action of the symmetric group on n + 3 letters on (Mlog

0,n+3)k, hence
also on X log

n . We shall denote this symmetric group — regarded as a group acting
on X log

n — by SM
n+3. In particular, we obtain a natural homomorphism

SM
n+3 → Out(Πtripod

n )

the elements of whose image we shall refer to as outer modular symmetries. [Thus,
the permutation outer automorphisms are the outer modular symmetries that oc-
cur as elements of the image of the inclusion Sn ↪→ SM

n+3 obtained by considering
permutations of the subset {1, . . . , n} ⊆ {a, b, c, 1, . . . , n}.] We shall refer to ele-
ments of Aut(Πtripod

n ) that lift outer modular symmetries as modular symmetries
of Πtripod

n . Write
OutFCS(Πtripod

n ) ⊆ OutFC(Πtripod
n )

for the subgroup of elements that commute with the outer modular symmetries;

OutFC(Πtripod
n )S ⊆ OutFC(Πtripod

n )

for the inverse image of the subgroup OutFCS(Πtripod
1 ) ⊆ OutFC(Πtripod

1 ) via the ho-
momorphism OutFC(Πtripod

n ) → OutFC(Πtripod
1 ) induced by the standard surjection

Πtripod
n � Πtripod

1 of (i). Thus, we have inclusions

OutFCS(Πtripod
n ) ⊆ OutFC(Πtripod

n )S ⊆ OutFC(Πtripod
n )cusp

and an equality OutFCS(Πtripod
1 ) = OutFC(Πtripod

1 )S. Here, the second displayed
inclusion follows by considering the induced permutations of the conjugacy classes
of the cuspidal inertia groups of Πtripod

1 , in light of the fact that S3 is center-free.

Remark 1.1.1. We recall in passing that, in the notation of Definition 1.1, Πn is
slim [cf. [24], Proposition 2.2, (ii)]. In particular, we have a natural isomorphism
Πn

∼→ Inn(Πn).

Remark 1.1.2. We recall in passing that, in the notation of Definition 1.1, when
(g, r) �∈ {(0, 3); (1, 1)}, it holds that for any α ∈ Aut(Πn) and any fiber subgroup
H ⊆ Πn, α(H) is a fiber subgroup of Πn [though it is not necessarily the case that
α(H) = H!]. Indeed, this follows from [24], Corollary 6.3.

Remark 1.1.3. If α ∈ Aut(Πn) satisfies the condition that α(Ka) = Ka for a =
1, . . . , n, then often — e.g., in situations where there is a “sufficiently nontrivial”
Galois action involved — it is possible to verify the C-admissibility of α by applying
[20], Corollary 2.7, (i), which allows one to conclude “group-theoretic cuspidality”
from “l-cyclotomic full-ness”.

Remark 1.1.4. In the context of Definition 1.1, (vi), we observe that if, for
instance, n = 2, then one verifies immediately that the outer modular symmetry
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determined by the permutation σ def= (a b)(c 1) yields an example of a C-admissible
element of Out(Πtripod

2 ) [since conjugation by σ preserves the set of transpositions
{(a 2), (b 2), (c 2), (1 2)}] which is not F-admissible [since conjugation by σ switches
the transpositions (c 2), (1 2) — cf. the argument of the final portion of Remark
1.1.5 below]. On the other hand, whereas every element of Out(Πtripod

1 ) is F-
admissible, it is easy to construct [since Πtripod

1 is a free pro-Σ group] examples of
elements of Out(Πtripod

1 ) which are not C-admissible. Thus, in general, neither of
the two properties of C- and F-admissibility implies the other.

Remark 1.1.5. Let α ∈ OutFC(Πn)cusp. Then observe that α necessarily induces
the identity permutation on the set of conjugacy classes of cuspidal inertia groups of
every standard-adjacent subquotient of Πn [i.e., not just Π1]. Indeed, by applying
the interpretation of the various Πb/a as “Πb−a’s” for appropriate “X log” [cf. [24],
Proposition 2.4, (i)], we reduce immediately to the case n = 2. But then the
cuspidal inertia group ⊆ Π2/1 associated to the unique new cusp that appears may
be characterized by the property that it is contained in Ξ2 [which, in light of the
F-admissibility of α, is clearly preserved by α].

Proposition 1.2. (First Properties of Admissibility) In the notation of
Definition 1.1, (ii), let α ∈ Aut(Πn). Then:

(i) Suppose that α(Ξn) = Ξn. Then there exists a permutation automor-
phism σ ∈ Aut(Πn) such that α ◦ σ is F-admissible. In particular, if α is
C-admissible, then it follows that α is FC-admissible.

(ii) Suppose that α ∈ AutFC(Πn). Let ρ : Πn � Πm be the quotient of Πn by a
fiber subgroup of co-length m ≤ n [cf. [24], Definition 2.3, (iii)]. Then α induces,
relative to ρ, an element αρ ∈ AutFC(Πm). If, moreover, α ∈ AutDFC(Πn) (respec-
tively, α ∈ AutIFC(Πn)), then αρ ∈ AutDFC(Πm) (respectively, αρ ∈ AutIFC(Πm)).

(iii) Suppose that α ∈ AutFC(Πn). Then there exist β ∈ AutDFC(Πn), ι ∈
Inn(Πn) such that α = β ◦ ι.

Proof. First, we consider assertion (i). Since α(Ξn) = Ξn, it follows that α induces
an automorphism of the quotient Πn � Π1×. . .×Π1 [i.e., onto the direct product of
n copies of Π1] determined by the various fiber subgroups of co-length 1. Moreover,
by [24], Corollary 3.4, this automorphism of Π1 × . . .×Π1 is necessarily compatible
with the direct product decomposition of this group, up to some permutation of
the factors. Thus, by replacing α by α ◦ σ for some permutation automorphism σ,
we may assume that the induced automorphism of Π1 × . . .× Π1 stabilizes each of
the direct factors. Now let us observe that this stabilization of the direct factors
is sufficient to imply that α(H) = H for any fiber subgroup H ⊆ Πn. Indeed,
without loss of generality, we may assume [by possibly re-ordering the indices] that
H = Ka for some Ka as in Definition 1.1, (i). By applying the same argument to
α−1, it suffices to verify that α(Ka) ⊆ Ka. Thus, let us suppose that α(Ka) ⊆ Kb

for some b < a, but α(Ka) �⊆ Kb+1. On the other hand, the image of α(Ka) in
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Πb+1/b = Kb/Kb+1 is normal, closed, topologically finitely generated, and of infinite
index [since, in light of the stabilization of direct factors observed above, this image
maps to {1} via the natural projectionKb/Kb+1 � Π1]. Thus, by [24], Theorem 1.5
— i.e., essentially the theorem of Lubotzky-Melnikov-van den Dries — we conclude
that this image is trivial, a contradiction. This contradiction completes the proof
of assertion (i).

Assertion (ii) is immediate from the definitions. Next, we consider assertion
(iii). For positive integers m ≤ n, write φm : Πn � Π1 for the quotient of Πn by
the fiber subgroup whose co-profile is equal to {m} [cf. [24], Definition 2.3, (iii)].
Thus, by assertion (ii), we obtain various αm

def= αφm
∈ Aut(Π1), with images

[αm] ∈ Out(Π1). Then let us observe that to complete the proof of assertion (iii),
it suffices to verify the following claim:

[αm] ∈ Out(Π1) is independent of m.

To verify this claim, we reason as follows: By applying assertion (ii) to the sur-
jection ρ : Πn � Π2 for which Ker(ρ) has co-profile {1, m} for m �= 1, we reduce
immediately to the case where n = 2. Then observe that it follows immediately
from the “uniqueness of a cusp associated to a given cuspidal inertia group” [cf.
[20], Proposition 1.2, (i)] that the decomposition groups ⊆ Π2 [all of which are
Π2-conjugate to one another] associated to the diagonal divisor in X2 may be re-
constructed as the normalizers of the various cuspidal inertia groups of Π2/1 that
lie in Ξ2. In particular, it follows immediately that α induces a bijection of the
collection of decomposition groups of Π2 associated to the diagonal divisor in X2

[all of which are Π2-conjugate to one another]. Thus, the automorphism of Π1×Π1

induced by α relative to the quotient (φ1, φ2) : Π2 � Π1 × Π1 maps the diagonal
Π1 ⊆ Π1 ×Π1 [which is the image of a decomposition group associated to the diag-
onal divisor in X2] to some (Π1×Π1)-conjugate of the diagonal Π1 ⊆ Π1×Π1. But
then it follows formally that [α1] = [α2]. This completes the proof of the claim,
and hence of assertion (iii). ©

Proposition 1.3. (Decomposition and Inertia Groups) Let n ≥ 1. Write
Dn for the set of irreducible divisors contained in the complement of the interior
Xn\UXn

of X log
n ;

Iδ ⊆ Dδ ⊆ Πn

for the inertia and decomposition groups, well-defined [as a pair] up to Πn-
conjugacy, associated to δ ∈ Dn; ψlog : X log

n → X log
n−1 for the projection obtained

by “forgetting the factor labeled n”; φlog : X log
n → X log

1 for the projection obtained
by “forgetting the factors with labels �= n”; ρψ : Πn � Πn−1, ρφ : Πn � Π1 for
the surjections determined by ψlog, φlog. Also, we recall the notation “Z(−)(−)”,
“N(−)(−)”, “C(−)(−)” reviewed in §0. Then:

(i) Dn may be decomposed as a union of two disjoint subsets

Dn = Dhor
n

⋃
Dver
n
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— where Dhor
n is the set of divisors which are horizontal with respect to ψlog [i.e.,

the cusps of the geometric generic fiber of ψlog]; Dver
n is the set of divisors Dver

n

which are vertical with respect to ψlog [so n ≥ 2, and ψn(δ) ∈ Dn−1 for δ ∈ Dhor
n ].

(ii) Let n ≥ 2; ε ∈ Dn−1. Then the log structure on X log determines on the
fiber (Xn)ε of ψlog over the generic point of ε a structure of pointed stable curve;
(Xn)ε consists of precisely two irreducible components [which may be thought
of as elements of Dver

n ] joined by a single node ν. One of these two irreducible
components, which we shall denote δF ∈ Dver

n , maps isomorphically to X1 = X
via φ; the other, which we shall denote δE ∈ Dver

n , maps to a cusp of X1 = X via
φ.

(iii) In the situation of (ii), let ζ ∈ {δF , δE}; suppose that the various conjugacy
classes have been chosen so that ρψ(Dζ) = Dε. Write

Πn,ε
def= ρ−1

ψ (Iε) ⊆ Πn; DI
ζ

def= Dζ

⋂
Πn,ε ⊆ Πn,ε; Πζ

def= Dζ

⋂
Πn/n−1

and Πν ⊆ ΠδF

⋂
ΠδE

⊆ Πn/n−1 for the decomposition group of ν in Πn/n−1.
Then: (a) ρφ induces an isomorphism ΠδF

∼→ Π1; (b) ρφ maps ΠδE
onto a

cuspidal inertia group of Π1; (c) Πζ, Πν are commensurably terminal in
Πn/n−1; (d) ρψ induces an isomorphism Iζ

∼→ Iε; (e) the inclusions Iζ ,Πζ ⊆ Πn,ε

induce an isomorphism Iζ × Πζ
∼→ DI

ζ ; (f) DI
ζ = CΠn,ε

(Πζ); (g) Iζ = ZΠn,ε
(Πζ).

(iv) In the situation of (ii), let α ∈ AutFC(Πn); θ ∈ {δF , δE , ν}; ε, ε′ ∈ Dn−1.
[Thus, we obtain “primed versions” δ′F , δ

′
E ∈ Dhor

n , ν′, θ′ corresponding to ε′ of
the data constructed in (ii), (iii) for ε.] Suppose that the automorphism of Πn−1

induced via ρψ by α stabilizes Iε ⊆ Πn−1 (respectively, maps Iε ⊆ Πn−1 to Iε′ ⊆
Πn−1). Then α maps the Πn/n−1-conjugacy (respectively, Πn-conjugacy) class
of Πθ to itself (respectively, to the Πn-conjugacy class of Πθ′). If θ ∈ {δF , δE} [so
θ′ ∈ {δ′F , δ′E}], then a similar statement holds with “Πθ”, “Πθ′” replaced by “DI

θ”,
“DI

θ′” or “Iθ”, “Iθ′”.

(v) The assignment δ 
→ Iδ determines an injection of Dn into the set of
Πn-conjugacy classes of subgroups of Πn that are isomorphic to the maximal pro-Σ
quotient ẐΣ of Ẑ.

(vi) Every α ∈ OutFC(Πn)cusp stabilizes the Πn-conjugacy class of the
inertia group Iδ, for δ ∈ Dn.

(vii) Write Pn for the product X×k . . .×kX of n copies of X over k; D∗
n ⊆ Dn

for the subset consisting of the strict transforms in Xn of the various irreducible
divisors in the complement of the image of the natural open immersion UXn

↪→ Pn;

OutQS(Πn) ⊆ Out(Πn)

— where “QS” stands for “quasi-special” — for the subgroup of outer automor-
phisms that stabilize the conjugacy class of each inertia group Iδ, for δ ∈ D∗

n. Then
OutQS(Πn) = OutFC(Πn)cusp.
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Proof. We apply induction on n. Thus, in the following, we may assume that
Proposition 1.3 has been verified for “smaller n” than the “n under consideration”.
Assertion (i) is immediate from the definitions. Assertion (ii) follows from the
well-known geometry of X log

n , X log
n−1, by thinking of X log

n−1 as a certain “moduli
space of pointed stable curves” and ψlog as the “tautological pointed stable curve
over this moduli space”. Next, we consider assertion (iii). First, we observe that
by applying the specialization isomorphisms [cf. §0] associated to the restriction
of ψlog : X log

n → X log
n−1 to the completion of Xn−1 along the generic point of ε,

we conclude that the pointed stable curve structure on (Xn)ε [cf. assertion (ii)]
determines a “semi-graph of anabelioids of pro-Σ PSC-type” as discussed in [20],
Definition 1.1, (i) [cf. also the discussion of [18], Appendix] whose associated “PSC-
fundamental group” may be identified with Πn/n−1. From this point of view, Πζ

forms a “verticial subgroup” [cf. [20], Definition 1.1, (ii)]; Πν forms a(n) [nodal]
“edge-like subgroup” [cf. [20], Definition 1.1, (ii)]. In particular, Πζ is center-free [cf.,
e.g., [20], Remark 1.1.3]. Now (a), (b) follow from the description of δF , δE given
in assertion (ii); (c) follows from [20], Proposition 1.2, (ii). To verify (d), observe
that by general considerations, the inertia group Iζ is isomorphic to some quotient
of ẐΣ; on the other hand, by the induction hypothesis, Iε is isomorphic to ẐΣ [cf.
assertion (v) for “n−1”]; thus, since (Xn)ε is reduced at its two generic points [which
correspond to δF , δE ], it follows that the homomorphism (ẐΣ �) Iζ → Iε (∼= ẐΣ) is
surjective, hence an isomorphism. Now (e) follows immediately from (d); (f) follows
from (c), (d), and (e); since, as observed above, Iε is abelian, (g) follows from (d),
(e), (f), and the fact that Πζ is center-free. This completes the proof of assertion
(iii). Next, we observe that since α induces a bijection of the collection of cuspidal
inertia groups ⊆ Πn/n−1 [a fact which renders it possible to apply the theory of
[20] in the noncuspidal case], assertion (iv) for Πθ, Πθ′ follows immediately from
[20], Corollary 2.7, (iii); assertion (iv) for “DI

θ”, “DI
θ′” or “Iθ”, “Iθ′” follows from

assertion (iv) for Πθ, Πθ′ by applying (f), (g) of assertion (iii).

Next, we consider assertions (v), (vi). When n = 1, assertions (v), (vi) follow,
respectively, from the “uniqueness of a cusp associated to a given cuspidal inertia
group” [cf. [20], Proposition 1.2, (i)], and the fact that α ∈ OutFC(Πn)cusp. Thus,
we may assume that n ≥ 2. The fact that α stabilizes the conjugacy classes of the
Iδ for δ ∈ Dhor

n follows immediately from the fact that α is C-admissible [cf. also
Remark 1.1.5]. Now let ζ ∈ Dver

n , ε ∈ Dn−1 be as in assertion (iii). By the induction
hypothesis, Iε is isomorphic to ẐΣ and determines a Πn−1-conjugacy class that is
distinct from the Πn−1-conjugacy classes of the “I(−)” of elements of Dn−1 that are
�= ε; moreover, the outer automorphism ∈ OutFC(Πn−1)cusp induced by α via ρψ
stabilizes the conjugacy class of Iε. In particular, by (d) of assertion (iii), it follows
that Iζ is isomorphic to ẐΣ, hence that the “I(−)” of elements of Dhor

n may be
distinguished from those of Dver

n by the property that they lie in Πn/n−1 = Ker(ρψ)
and from one another by [20], Proposition 1.2, (i). Thus, to complete the proof of
assertions (v), (vi), it suffices to verify assertions (v), (vi) with “Dn” replaced by
“the subset {δF , δE} ⊆ Dn”. But then assertion (vi) follows from the resp’d case
of assertion (iv); moreover, by the non-resp’d case of assertion (iv), if IδE

, IδF
are

Πn-conjugate, then they are Πn/n−1-conjugate.
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Thus, to complete the proof of assertion (v), it suffices to derive a contradiction
under the assumption that IδE

= γ · IδF
· γ−1, where γ ∈ Πn/n−1. Note that by (e)

of assertion (iii), this assumption implies that IδE
commutes with ΠδE

, γ ·ΠδF
·γ−1.

Next, observe that by projecting to the various maximal pro-l quotients for some
l ∈ Σ, we may assume without loss of generality that Σ = {l}. Then one verifies
immediately that the images of ΠδE

, ΠδF
in the abelianization Πab

n/n−1 of Πn/n−1

generate Πab
n/n−1, hence [since Πn/n−1 is a pro-l group — cf., e.g., [31], Proposition

7.7.2] that Πn/n−1 is generated by ΠδE
and any single Πn/n−1-conjugate of ΠδF

.
Thus, in summary, we conclude that IδE

commutes with Πn/n−1, i.e., that the outer
action of Iε on Πn/n−1 is trivial. On the other hand, since the nodal curve (Xn)ε
is not smooth, we obtain a contradiction, for instance, from [20], Proposition 2.6.
This completes the proof of assertion (v).

Finally, we consider assertion (vii). The fact that OutFC(Πn)cusp ⊆ OutQS(Πn)
follows immediately from assertion (vi). Next, let us observe that by applying
“Zariski-Nagata purity” [i.e., the classical non-logarithmic version of the “log pu-
rity theorem” discussed in §0] to the product of n copies of UX over k, it follows
that the subgroup Ξn ⊆ Πn is topologically normally generated by the Iδ, for the
δ ∈ D∗

n that arise as strict transforms of the various diagonals in Pn. Thus, the
fact that OutQS(Πn) ⊆ OutFC(Πn)cusp follows immediately from the definition of
“OutQS(−)” and Proposition 1.2, (i). This completes the proof of assertion (vii).
©

Remark 1.3.1. The theory of inertia and decomposition groups such as those
discussed in Proposition 1.3 is developed in greater detail in [22], §1.

For i = 1, 2, write
prlogi : X log

2 → X log
1

for the projection to the factor labeled i, pri : X2 → X1 for the underlying mor-
phism of schemes, and pi : Π2 → Π1 for the surjection induced by prlogi .

Definition 1.4. Let x ∈ X(k) be a cusp of X log.

(i) Observe that the log structure on X log
2 determines on the fiber (X2)x of the

morphism pr1 : X2 → X1 over x a structure of pointed stable curve, which consists
of two irreducible components, one of which — which we shall denote Fx — maps
isomorphically to X via pr2 : X2 → X1 = X , the other of which — which we shall
denote Ex — maps to the point x ∈ X(k) via pr2; Fx, Ex are joined at a single node
νx [cf. Proposition 1.3, (ii)]. Let us refer to Fx as the major cuspidal component
at x, to Ex as the minor cuspidal component at x, and to νx as the nexus at x.
Thus, the complement in Fx (respectively, Ex) of the nodes and cusps [relative to
the pointed stable curve structure on (X2)x] of Fx (respectively, Ex) — which we
shall refer to as the interior UFx

of Fx (respectively, UEx
of Ex) — determines a

hyperbolic curve UFx
(respectively, tripod UEx

). Moreover, pr2 induces [compatible]
isomorphisms UFx

∼→ UX , Fx
∼→ X .
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(ii) As discussed in Proposition 1.3, (iii), and its proof, the major and minor
cuspidal components at x, together with the nexus at x, determine [conjugacy
classes of] verticial and edge-like subgroups [cf. [20], Definition 1.1, (ii)]

ΠFx
,ΠEx

,Πνx
⊆ Π2/1

— which we shall refer to, respectively, as major verticial, minor verticial, and nexus
subgroups. Thus, [cf. Proposition 1.3, (iii), (a), (b)] the morphism p2 : Π2 → Π1

determines an isomorphism
ΠFx

∼→ Π1

— i.e., the major verticial subgroups may be thought of as defining sections of
the projection p2 : Π2 � Π1; p2 maps ΠEx

onto a cuspidal inertia group of Π1

associated to x. For suitable choices within the various conjugacy classes involved,
we have natural inclusions

ΠEx
⊇ Πνx

⊆ ΠFx

[inside Π2/1].

Proposition 1.5. (First Properties of Major and Minor Verticial Sub-
groups) In the notation of Definition 1.4:

(i) Πνx
, ΠFx

, and ΠEx
are commensurably terminal in Π2/1.

(ii) Suppose that one fixes Πνx
⊆ Π2/1 among its various Π2/1-conjugates.

Then the condition that there exist inclusions

Πνx
⊆ ΠEx

; Πνx
⊆ ΠFx

completely determines ΠEx
and ΠFx

among their various Π2/1-conjugates.

(iii) In the notation of (ii), the compatible inclusions Πνx
⊆ ΠEx

⊆ Π2/1,
Πνx

⊆ ΠFx
⊆ Π2/1 determine an isomorphism

lim−→
(
ΠEx

←↩ Πνx
↪→ ΠFx

) ∼→ Π2/1

— where the inductive limit is taken in the category of pro-Σ groups.

Proof. Assertion (i) follows from [20], Proposition 1.2, (ii) [cf. Proposition 1.3,
(iii), (c)]. Assertion (ii) follows from the fact that “every nodal edge-like subgroup
is contained in precisely two verticial subgroups” [cf. [20], Proposition 1.5, (i)].
Assertion (iii) may be thought of as a consequence of the “van Kampen Theorem”
in elementary algebraic topology. At a more combinatorial level, one may reason as
follows: It follows immediately from the simple structure of the dual graph of the
pointed stable curves considered in Definition 1.4 that there is a natural equivalence
of categories [arising from the parenthesized inductive system in the statement of
assertion (iii)] between
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(a) the category of finite sets E with continuous Π2/1-action [and Π2/1-
equivariant morphisms] and

(b) the category of finite sets equipped with continuous actions of ΠFx
, ΠEx

which restrict to the same action on Πνx
⊆ ΠFx

, Πνx
⊆ ΠEx

[and ΠFx
-,

ΠEx
-equivariant morphisms].

The isomorphism between Π2/1 and the inductive limit of the parenthesized induc-
tive system of assertion (iii) now follows formally from this equivalence of categories.
©

Remark 1.5.1. The technique of “van Kampen-style gluing” of fundamental
groups that appears in Proposition 1.5, (iii), will play an important role in the
present paper. Similar methods involving isomorphs of the fundamental group of a
tripod [cf. Corollary 1.10, (iii), below; Theorem A, (iii), of the Introduction] may
be seen in the arguments of [27], [28].

Proposition 1.6. (Inertia Groups and Symmetry) In the notation of the
discussion preceding Definition 1.4, write

Π1\2
def= Ker(p2 : Π2 � Π1)

[cf. Π2/1 = Ker(p1 : Π2 � Π1)]. Thus, each cusp of the family of hyperbolic curves
pr2|UX2

: UX2 → UX1 gives rise to a well-defined, up to Π1\2-conjugacy, cuspidal
inertia group ⊆ Π1\2. Then:

(i) Write δ for diagonal divisor in X2. Let Iδ ⊆ Dδ be a pair of iner-
tia and decomposition groups associated to δ. Then: (a) the cuspidal iner-
tia groups ⊆ Π1\2 corresponding to the cusp determined by δ are contained in
Ξ2 = Π1\2

⋂
Π2/1 and coincide with the cuspidal inertia groups ⊆ Π2/1 corre-

sponding to the cusp determined by δ, as well as with the Π2-conjugates of Iδ;
(b) either p1 or p2 determines [the final nontrivial arrow in] an exact sequence
1 → Iδ → Dδ → Π1 → 1; (c) we have Dδ = CΠ2(Iδ).

(ii) Let x ∈ X1(k) = X(k) be a cusp of X log. Let us think of x, Fx as elements
of D1, Dver

2 , respectively [cf. Proposition 1.3, (i)]. Then: (a) the major cuspidal
component Fx at x is equal to the closure in X2 of the divisor of UX2 determined by
pr−1

1 (x); (b) Ix = Dx; (c) IFx
is a cuspidal inertia group ⊆ Π1\2 associated to the

cusp UFx
of the family of hyperbolic curves pr2|UX2

: UX2 → UX1 ; (d) DFx
= DI

Fx
;

(e) DFx

⋂
Π1\2 = IFx

; (f) DFx
= CΠ2(DFx

).

(iii) Let σ be a non-inner permutation automorphism of Π2, α ∈ AutFC(Π2).
Then ασ

def= σ ◦ α ◦ σ−1 ∈ AutFC(Π2).

Proof. The content of (a), (b) of assertion (i) follows immediately from the defi-
nitions involved; (c) follows immediately from (b), together with the fact that Iδ is
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commensurably terminal in either Π2/1 or Π1\2 [cf. [20], Proposition 1.2, (i)]. Next,
we consider assertion (ii). First, let us observe that (a), (b) are immediate from
the definitions; (c) follows immediately from the definitions and (a); (d) follows
immediately from (b) [cf. Proposition 1.3, (iii)]. To verify (e), let us first observe
that it follows immediately from the geometry of the morphism prlog2 : X log

2 → X log
1

that p2(IFx
) = {1}; thus, (e) follows [in light of (d)] from Proposition 1.3, (iii),

(a), (e). Finally, since Ix is commensurably terminal in Π1 [cf. [20], Proposition
1.2, (ii)], (f) follows immediately from (d) and Proposition 1.3, (iii), (d), (e), (f).
This completes the proof of assertion (ii). Finally, we consider assertion (iii). It
is immediate from the definitions that ασ ∈ Aut(Π2) is F-admissible. Moreover, it
follows immediately from Proposition 1.2, (iii), together with the C-admissibility
of α, that ασ induces a bijection of the collection of cuspidal inertial groups of the
quotient p1 : Π2 � Π1. Thus, it suffices to verify that ασ induces a bijection of the
collection of cuspidal inertial groups of Π2/1, i.e., that α induces a bijection of the
collection of cuspidal inertial groups of Π1\2. But in light of assertions (i) and (ii),
(c), this follows immediately from the FC-admissibility of α and Proposition 1.3,
(vi). This completes the proof of assertion (iii). ©

Proposition 1.7. (Inertia and Decomposition Groups of Minor Cus-
pidal Components) In the notation of Proposition 1.6, suppose further that
x ∈ X1(k) = X(k) is a cusp of X log. Let us think of x, Ex as elements of
D1, Dver

2 , respectively [cf. Proposition 1.3, (i)]. Then: (a) DEx
= DI

Ex
; (b)

IEx

⋂
Π1\2 = {1}; (c) DEx

= CΠ2(DEx
); (d) for any open subgroup J ⊆ ΠEx

,
ZΠ2(J) = IEx

; (e) DEx
= CΠ2(ΠEx

).

Proof. First, we observe that the equality of (a) (respectively, (c)) follows by
a similar argument to the argument applied to prove Proposition 1.6, (ii), (d)
(respectively, 1.6, (ii), (f)); (b) follows immediately from the geometric fact that
the inverse image via pr2 : X2 → X1 of the closed point x contains the divisor Ex
with multiplicity one. Next, let us consider (d). First, let us observe that, in the
notation of Proposition 1.6, (i), the diagonal divisor δ intersects Ex transversely;
in particular, [for appropriate choices of conjugates] we have Iδ ⊆ ΠEx

. Thus,
ZΠ2(J) ⊆ ZΠ2(J

⋂
Iδ) ⊆ CΠ2(Iδ) = Dδ [cf. Proposition 1.6, (i), (c)]. On the other

hand, note that p2(ΠEx
) is a cuspidal inertia group — i.e., “Ix” — of Π1 associated

to x [cf. Proposition 1.3, (iii), (b)], hence commensurably terminal in Π1 [cf. [20],
Proposition 1.2, (ii)]. Thus, the inclusion ZΠ2(J) ⊆ Dδ implies [for appropriate
choices of conjugates] that p1(ZΠ2(J)) = p2(ZΠ2(J)) ⊆ Ix, so the desired equality
ZΠ2(J) = IEx

follows immediately from Proposition 1.3, (iii), (e), (f), together with
the fact that ΠEx

is slim [cf. Remark 1.1.1]. This completes the proof of (d). Now
it follows immediately from (d) that CΠ2(ΠEx

) ⊆ NΠ2(IEx
). Thus, in light of (a),

we conclude from Proposition 1.3, (iii), (e), that CΠ2(ΠEx
) ⊆ CΠ2(DEx

), so (e)
follows immediately from (c). ©

For i, j ∈ {1, 2, 3} such that i < j, write

prlogij : X log
3 → X log

2
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for the projection to the factors labeled i and j of X log
3 — which we think of as

corresponding, respectively, to the factors labeled 1 and 2 of X log
2 ; prij : X3 → X2

for the underlying morphism of schemes; and pij : Π3 → Π2 for the surjection
induced by prlogij . Also, for i ∈ {1, 2, 3}, write

prlogi : X log
3 → X log

1

for the projection to the factor labeled i of X log
3 ; pri : X3 → X1 for the underlying

morphism of schemes; pi : Π3 → Π1 for the surjection induced by prlogi .

Definition 1.8. Write U def= UX ; V ⊆ U ×k U for the diagonal [so we have
a natural isomorphism V

∼→ U ]; V log for the log scheme obtained by equipping
V with the log structure pulled back from X log

2 [where we recall that we have a
natural immersion U ×k U ↪→ X2]. Let P log be a tripod over k.

(i) The morphism of log schemes prlog12 : X log
3 → X log

2 determines a structure of
family of pointed stable curves on the restriction X3|V → V of pr12 to V . Moreover,
X3|V consists of precisely two irreducible components FV , EV — which we refer to,
respectively, as major cuspidal and minor cuspidal. Here, the intersection FV

⋂
EV

is a node νV : V → X3|V ; either pr13 or pr23 induces an isomorphism FV
∼→ V ×kX

over V ; the natural projectionEV → V is a P1-bundle; the three sections of EV → V
given by νV and the two cusps of X3|V → V that intersect EV determine a unique
isomorphism EV

∼→ V ×k P over V [i.e., such that the three sections of EV → V
correspond to the cusps of the tripod, which we think of as being “labeled” by
these three sections]. Write (V ×k UP ∼=) W ⊆ EV for the open subscheme given
by the complement of these three sections; W log for the log scheme obtained by
equipping W with the log structure pulled back from X log

3 via the natural inclusion
W ⊆ EV ⊆ X3|V ⊆ X3. Thus, we obtain a natural morphism of log schemes
W log → V log.

(ii) For x ∈ U(k), denote the fibers relative to pr1 over x by means of a subscript
“x”; write Y log → Spec(k) for the smooth log curve determined by the hyperbolic
curve U\{x}, y ∈ Y (k) for the cusp determined by x. Thus, we have a natural
isomorphism (X log

3 )x
∼→ Y log

2 [cf. [24], Remark 2.1.2]; this isomorphism allows one
to identify Π3/1 with the “Π2” associated to Y log [cf. [24], Proposition 2.4, (i)].
Relative to this isomorphism (X log

3 )x
∼→ Y log

2 , FV |x, EV |x may be identified with
the irreducible components “Fy”, “Ey” of Definition 1.4, (i), applied to Y log, y [in
place of X log, x]. In particular, we obtain major and minor verticial subgroups
ΠFV

⊆ Π3/2, ΠEV
⊆ Π3/2 [i.e., corresponding to the “ΠFy

”, “ΠEy
” of Definition

1.4, (ii)].

Proposition 1.9. (Minor Cuspidal Components in Three-Dimensional
Configuration Spaces) In the notation of Definition 1.8, let us think of V , W as
elements of Dhor

2 , Dver
3 , respectively, and suppose that p12(DW ) = DV [cf. Proposi-

tion 1.3, (i), (iii)]. Then:
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(i) Write JW
def= ZDW

(ΠEV
). Then: (a) p12 induces an isomorphism JW

∼→ DV ;
(b) the inclusions JW ↪→ DW , ΠEV

↪→ DW induce an isomorphism JW×ΠEV

∼→ DW ;
(c) p1 determines natural exact sequences 1 → IW → JW → Π1 → 1, 1 → IV →
DV → Π1 → 1, which are compatible with the isomorphisms IW

∼→ IV , JW
∼→ DV

induced by p12.

(ii) For any open subgroup J ⊆ ΠEV
, we have: ZΠ3(J) = JW .

(iii) We have: CΠ3(ΠEV
) = DW .

Proof. Since ΠEV
∼= Πtripod is center-free [cf. Remark 1.1.1], assertion (i) follows

immediately from the isomorphism of log schemes W log ∼→ V log ×k UP induced
by the isomorphism of schemes W ∼→ V ×k UP and the morphism of natural log
schemes W log → V log [cf. Definition 1.8, (i)]. Next, we consider assertion (ii). Since
p1 induces a surjection JW � Π1, and it is immediate that JW ⊆ ZΠ3(J), it suffices
to verify that JW

⋂
Π3/1 = ZΠ3(J)

⋂
Π3/1 = ZΠ3/1(J). But this follows from

Proposition 1.7, (d) [cf. the discussion of Definition 1.8, (ii)]. In a similar vein, since
p1 induces a surjection DW � Π1, and it is immediate that DW ⊆ CΠ3(ΠEV

), in
order to verify assertion (iii), it suffices to verify that DW

⋂
Π3/1 = CΠ3/1(ΠEV

).
But this follows from Proposition 1.7, (e). This completes the proof of Proposition
1.9. ©

Corollary 1.10. (Outer Actions on Minor Verticial Subgroups) Suppose
that n ≥ 2. Then the subquotient Πn−1/n−2 of Πn may be regarded [cf. [24], Propo-
sition 2.4, (i)] as the pro-Σ fundamental group — i.e., “Π1” — of the geometric
generic fiber Z log of the morphism X log

n−1 → X log
n−2 [which we think of as the projec-

tion obtained by “forgetting the factor labeled n− 1”]; the subquotient Πn/n−2 may
then be thought of [cf. [24], Proposition 2.4, (i)] as the pro-Σ fundamental group of
2-nd log configuration space — i.e., “Π2” — associated to Z log. In particular, any
cusp x of Z log determines, up to Πn/n−2-conjugacy, a minor verticial subgroup
— i.e., an isomorph of Πtripod — ΠEx

⊆ Πn/n−1. Then:

(i) Any α ∈ AutFC(Πn)cusp [cf. Definition 1.1, (v)] stabilizes the Πn/n−2-
conjugacy class of ΠEx

.

(ii) The commensurator and centralizer of ΠEx
in Πn satisfy the relation

CΠn
(ΠEx

) = ZΠn
(ΠEx

) × ΠEx
. In particular, for any open subgroup J ⊆ ΠEx

, we
have ZΠn

(J) = ZΠn
(ΠEx

).

(iii) By applying (i), (ii), one obtains a natural homomorphism

OutFC(Πn)cusp → OutFC(ΠEx
)

and hence a natural outer homomorphism OutFC(Πn)cusp → OutFC(Πtripod),
associated to the cusp x of Z log.

Proof. In light of the superscript “cusp” and the FC-admissibility of α [cf. Remark
1.1.5], assertion (i) follows immediately from the resp’d portion of Proposition 1.3,
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(iv). Next, we consider assertion (ii). First, let us recall that ΠEx
is commensurably

terminal in Πn/n−1 [cf. Proposition 1.5, (i)]. On the other hand, it is immediate
from the definitions that CΠn

(ΠEx
) ⊆ NΠn

(CΠn/n−1(ΠEx
)). Thus, we conclude

that CΠn
(ΠEx

) = NΠn
(ΠEx

). In particular, to complete the proof of assertion (ii),
it suffices [since ΠEx

is slim — cf. Remark 1.1.1] to verify that

(*) the natural outer action of NΠn
(ΠEx

) on ΠEx
is trivial.

Now let j ∈ {1, . . . , n− 1} be the smallest element m ∈ {1, . . . , n− 1} such that x
corresponds to a cusp of the geometric generic fiber of the morphism X log

m → X log
m−1

[which we think of as the projection obtained by “forgetting the factor labeled m”].
[Here, we write X log

0
def= Spec(k).] Now if j = 1, then by applying the projection

Πn � Π2 determined by the factors labeled 1, n, we conclude that (*) follows from
Propositions 1.3, (iii), (e); 1.7, (a), (e). In a similar vein, if j ≥ 2, then by applying
the projection Πn � Π3 determined by the factors labeled j − 1, j, n, we conclude
that (*) follows from Proposition 1.9, (i), (b); 1.9, (iii). This completes the proof
of assertion (ii).

Finally, we observe that assertion (iii) follows immediately from assertions (i),
(ii), by choosing some isomorphism ΠEx

∼→ Πtripod [which is determined only up
to composition with an element of AutFC(Πtripod)] that is compatible with the
cuspidal inertia groups. That is to say, if α ∈ AutFC(Πn)cusp, then by assertion
(i), α0(α(ΠEx

)) = ΠEx
for some Πn-inner automorphism α0 of Πn. Since α0 is

uniquely determined up to composition with an element of NΠn
(ΠEx

), it follows
from assertion (ii) that the outer automorphism α1 ∈ OutFC(ΠEx

) determined by
α0 ◦ α is uniquely determined by α. Moreover, one verifies immediately that the
assignment α 
→ α1 determines a homomorphism OutFC(Πn)cusp → OutFC(ΠEx

),
hence an outer homomorphism OutFC(Πn)cusp → OutFC(Πtripod), as desired. ©

Definition 1.11.

(i) In the situation of Definition 1.1, (vi), let us write

OutFC(Πtripod)� def= OutFCS(Πtripod) = OutFC(Πtripod)S

and
OutFC(Πtripod)�+ ⊆ OutFC(Πtripod)�

for the subgroup given by the image of OutFC(Πtripod
2 )S via the natural homo-

morphism OutFC(Πtripod
2 ) → OutFC(Πtripod

1 ) induced by the standard surjection
Πtripod

2 � Πtripod
1 .

(ii) Now let us return to the case of arbitrary (g, r); suppose that n ≥ 2. Then
let us write

OutFC(Πn)�+ ⊆ OutFC(Πn)� ⊆ OutFC(Πn)cusp

for the subsets [which are not necessarily subgroups!] given by the unions of the
respective inverse images of OutFC(ΠEx

)�+ ⊆ OutFC(ΠEx
)� ⊆ OutFC(ΠEx

) via
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the natural homomorphism OutFC(Πn)cusp → OutFC(ΠEx
) associated in Corollary

1.10, (iii), to a cusp x [as in loc. cit.], as x ranges over all cusps as in loc. cit.

Remark 1.11.1. It is shown in [5] [cf. Corollary 4.2, (i), (ii), below; Re-
mark 4.2.1 below; [5], §0.1, Main Theorem, (b)] that OutFC(Πtripod)�+ may be
identified with the Grothendieck-Teichmüller group. Thus, one may think of the
set OutFC(Πn)�+ of Definition 1.11, (ii), as the set of outer automorphisms “of
Grothendieck-Teichmüller type”.

Corollary 1.12. (Injectivity for Tripods) Suppose that X log is a tripod.
Then:

(i) The natural inclusion Ξ2 ↪→ AutIFC(Π2) is an isomorphism.

(ii) The natural homomorphism

OutFC(Π2) → OutFC(Π1)

induced by p1 : Π2 � Π1 is injective.

(iii) We have: OutFCP(Π2) = OutFC(Π2).

Proof. First, we observe that assertion (ii) follows formally from assertion (i) and
Proposition 1.2, (iii). Next, we observe that assertion (iii) follows formally from
assertion (ii) and Propositions 1.2, (iii); 1.6, (iii). Thus, to complete the proof of
Corollary 1.12, it suffices to verify assertion (i). To this end, let α ∈ AutIFC(Π2).
Let us assign the cusps of X log the labels a, b, c. Note that the labels of the cusps
of X log induce labels “a”, “b”, “c” for three of the cusps of the geometric generic
fiber of the morphism UX2 → UX1 determined by pr1; assign the fourth cusp of
this geometric generic fiber the label ∗. Since α ∈ AutIFC(Π2), it follows that α
induces [relative to p1 or p2] the identity permutation of the conjugacy classes of
cuspidal inertia groups of Π1. Since cuspidal inertia groups associated to ∗ may
be characterized by the property that they are contained in Ξ2, we thus conclude
that α induces the identity permutation of the conjugacy classes of cuspidal inertia
groups of Π2/1.

Now let us fix a cuspidal inertia group Ia ⊆ Π2/1 associated to the cusp labeled
a. Thus, α(Ia) = ζ · Ia · ζ−1, for some ζ ∈ Π2/1. Since α ∈ AutIFC(Π2), and

Ja
def= p2(Ia) is normally terminal in Π1 [cf. [20], Proposition 1.2, (ii)], it thus

follows that p2(ζ) ∈ Ja, so [by replacing ζ by an appropriate element ∈ ζ ·Ia] we may
assume without loss of generality that ζ ∈ Π2/1

⋂
Π1\2 = Ξ2. Thus, by replacing

α by the composite of α with a Ξ2-inner automorphism, we may assume without
loss of generality that α(Ia) = Ia. By [20], Proposition 1.5, (i), it follows that there
exists a unique [i.e., among its Π2/1-conjugates] major verticial subgroup ΠFb

at b
(respectively, ΠFc

at c) such that Ia ⊆ ΠFb
(respectively, Ia ⊆ ΠFc

). By the non-
resp’d portion of Proposition 1.3, (iv) [which is applicable since α ∈ AutIFC(Π2)!
— cf. Remark 1.13.2 below], we thus conclude that α(ΠFb

) = ΠFb
, α(ΠFc

) = ΠFc
.
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Since α ∈ AutIFC(Π2), and p2 induces isomorphisms ΠFb

∼→ Π1, ΠFc

∼→ Π1 [cf.
Definition 1.4, (ii)], we thus conclude that α is the identity on ΠFb

, ΠFc
. On the

other hand, it follows immediately — for instance, by considering the well-known
geometry of “loops around cusps” of the complex plane with three points removed
[cf. Lemma 1.13; Fig. 1 below] — that Π2/1 is topologically generated by ΠFb

, ΠFc
.

Thus, we conclude that α induces the the identity on Π2/1. But since the extension
1 → Π2/1 → Π2 → Π1 → 1 induced by p1 may be constructed naturally from the

resulting outer action of Π1 on Π2/1 [i.e., as Π2/1

out
� Π1 — cf. §0; Remark 1.1.1],

we thus conclude that α is the identity. This completes the proof of assertion (i).
©

*

ab c

FFb c

Fig. 1: The geometry of a tripod equipped with a fourth cusp “∗”.

The following result is well-known.

Lemma 1.13. (Topological Generation by Loops around Cusps) In the
notation of the proof of Corollary 1.12, the compatible inclusions Ia ⊆ ΠFb

⊆ Π2/1,
Ia ⊆ ΠFc

⊆ Π2/1 determine an isomorphism

lim−→
(
ΠFb

←↩ ΠIa
↪→ ΠFc

) ∼→ Π2/1
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— where the inductive limit is taken in the category of pro-Σ groups. In par-
ticular, Π2/1 is topologically generated by ΠFb

, ΠFc
.

Proof. In the following, we shall denote the usual topological fundamental group
by “πtop

1 (−)”. We may assume without loss of generality that k is the field C of
complex numbers. Then, as is well-known, the topology of a stable curve may
be understood — from the point of view of “pants decompositions” [cf., e.g., [1],
Chapter 2] — as the result of collapsing various “partition curves” on a hyperbolic
Riemann surface to points [which form the nodes of the stable curve]. In particular,
in the case of interest, one obtains that ΠFb

⊆ Π2/1, ΠFc
⊆ Π2/1 may be described

in the following fashion: Write V for the Riemann surface obtained by removing
the points {0, 3,−3} from the complex plane C. Write D+ (respectively, D−) for
the intersection with V of the open disc of radius 3 centered at 1 (respectively, −1).
Note that V is equipped with a holomorphic automorphism ι : V → V given by
“multiplication by −1”; ι(D+) = D−, ι(D−) = D+. Let us think of −3, 0, 3 as
corresponding, respectively, to the cusps b, a, c. Then we may think of Π2/1 as the
pro-Σ completion of πtop

1 (V ) and of ΠFb
⊆ Π2/1 as corresponding, at least up to

Π2/1-conjugacy, to the pro-Σ completion of πtop
1 (D−) ⊆ πtop

1 (V ). By transport of
structure via ι, we then obtain that we may think of ΠFc

⊆ Π2/1 as corresponding,
at least up to Π2/1-conjugacy, to the pro-Σ completion of πtop

1 (D+) ⊆ πtop
1 (V ). As

in the proof of Corollary 1.12, we may rigidify the various conjugacy indeterminacies
by taking the basepoints of πtop

1 (V ), πtop
1 (D+), and πtop

1 (D−) to be the point i ∈ C

and taking Ia ⊆ Π2/1 to correspond to the subgroup topologically generated by the
element of πtop

1 (V ) determined by the circle γa of radius 1 centered at a [i.e., 0],
oriented counterclockwise [so γa ⊆ D+

⋂
D−]. Thus, if one takes γb (respectively,

γc) to be a loop in V , oriented counterclockwise, given by a slight deformation of
the path obtained by traveling from i to b (respectively, c) and then back to i along
the line segment from i to b (respectively, c), then γb ⊆ D−, γc ⊆ D+. Moreover,
as is well-known from the “van Kampen theorem” in elementary algebraic topology
[cf. also the more combinatorial point of view discussed in the proof of Proposition
1.5, (iii)], πtop

1 (V ) = πtop
1 (D+

⋃
D−) is naturally isomorphic to the inductive limit,

in the category of groups, of the diagram

πtop
1 (D−) ←↩ πtop

1 (D+

⋂
D−) ↪→ πtop

1 (D+)

— where we observe that πtop
1 (D−) is generated by γa and γb, π

top
1 (D+

⋂
D−)

is generated by γa, and πtop
1 (D+) is generated by γa and γc. Thus, Lemma 1.13

follows by passing to pro-Σ completions. ©

Remark 1.13.1. In the notation of Corollary 1.12 and its proof, we observe that
the isomorphism of Lemma 1.13 suggests that it may be possible to verify that the
natural injection

OutFC(Π2) ↪→ OutFC(Π1)

of Corollary 1.12, (ii), is surjective [hence an isomorphism] via the following argu-
ment: Let β1 ∈ AutFC(Π1). Then it suffices to verify that β1 arises [via p1] from
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an element of AutFC(Π2). Fix a “rigidified triple”

ΠFb
⊇ Ia ⊆ ΠFc

as in the proof of Corollary 1.12. Let us assume, for simplicity, that β1(Ja) = Ja
[where we recall that Ja = p2(Ia)]. Next, let us observe that p2 induces isomor-
phisms ΠFb

∼→ Π1, ΠFc

∼→ Π1 which coincide on Ia ⊆ ΠFb
, Ia ⊆ ΠFc

. Thus, it
follows formally from the isomorphism of Lemma 1.13 that there exists a unique
automorphism β2/1 of Π2/1 that is compatible, relative to p2, with the automorphism
β1 of Π1. In particular, β2/1 constitutes a natural candidate for [the restriction to
Π2/1 of] a lifting of β1 to AutFC(Π2). On the other hand, unfortunately, it is not
clear whether or not β2/1, constructed in this way, stabilizes the Π2/1-conjugacy
class of the cuspidal inertia groups associated to the cusp ∗. In particular, this
argument alone is not sufficient to construct a lifting of β1 to AutFC(Π2) from
β2/1.

Remark 1.13.2. Another [perhaps more fundamental!] problem with the ap-
proach proposed in Remark 1.13.1 is the following. If one already knows that
β1 ∈ AutFC(Π1) arises [via p1] from some β2 ∈ AutFC(Π2), then one wishes for the
explicit construction of β2/1 that is applied to give rise to the outer automorphism
of Π2/1 obtained by restricting β2 to Π2/1. For instance, if β1 is inner, then it arises
from a β2 ∈ AutFC(Π2) which is inner. Moreover, in order to pass from the β2/1

constructed from an arbitrary β1 ∈ AutFC(Π1) by applying the natural isomor-

phism Π2
∼→ Π2/1

out
� Π1 [cf. §0; Remark 1.1.1], it is of crucial importance for the

explicit construction β1 � β2/1 to be a homomorphism which yields the restriction
to Π2/1 of an inner lifting to AutFC(Π2) when applied to an inner β1. On the other
hand, if β1 is a non-trivial inner automorphism of Π1, then [as is easily verified]
there do not exist cuspidal inertia groups Jb, Jc ⊆ Πtripod

1 corresponding to the
cusps labeled b, c such that β1(Ja) = Ja, β1(Jb) = Jb, β1(Jc) = Jc. In particular,
in the case of such an arbitrary inner β1, one may not apply the non-resp’d portion
of Proposition 1.3, (iv), to conclude that the Π2/1-conjugacy classes of major and
minor verticial subgroups or nexus subgroups of Π2/1 are preserved by an inner
lifting β2. Instead, one may only apply the resp’d portion of Proposition 1.3, (iv),
to conclude that the Π2-conjugacy classes of such subgroups are preserved by β2 —
which is insufficient for the execution of the construction of Remark 1.13.1 [i.e., of
the proof of Corollary 1.12].

Corollary 1.14. (Modular Symmetries of Tripods) Suppose that X log is a
tripod. Let n ≥ 2. Then:

(i) The outer modular symmetries ∈ Out(Πn) normalize OutFC(Πn)cusp.
If, moreover, the natural homomorphism OutFC(Πm) → OutFC(Πm−1) induced by
the standard surjection Πm � Πm−1 is injective for all integers m such that
2 ≤ m ≤ n, then we have OutFCP(Πn)

⋂
OutFC(Πn)S = OutFCS(Πn).

(ii) Let x be as in Corollary 1.10. Write π : Πn � Π1 for the standard surjec-
tion. Then there exists an outer modular symmetry σ ∈ Out(Πn) such that the
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restriction of π ◦ σ : Πn � Π1 to ΠEx
⊆ Πn determines an outer isomorphism

ΠEx

∼→ Π1 that is independent of the choice of ΠEx
among its Πn-conjugates.

(iii) Suppose that we are in the situation of (ii). Let α ∈ OutFC(Πn)cusp;
α|Ex

∈ OutFC(ΠEx
) the result of applying the displayed homomorphism of Corollary

1.10, (iii), to α; ασ def= σ · α · σ−1 ∈ OutFC(Πn)cusp [cf. (i)]; ασ1 ∈ OutFC(Π1)cusp

the outer automorphism of Π1 induced by ασ via π. [Thus, α = ασ whenever
α ∈ OutFCS(Πn).] Then α|Ex

and ασ1 are compatible with the outer isomorphism
ΠEx

∼→ Π1 of (ii). In particular, if α|Ex
∈ OutFC(ΠEx

)S, then ασ ∈ OutFC(Πn)S.

(iv) We have: OutFCS(Πn) ⊆ OutFC(Πn)�+.

Proof. First, we consider assertion (i). We apply induction on n. First, let us
observe that relative to the natural isomorphism X log

n
∼→ (Mlog

0,n+3)k [cf. Defini-
tion 1.1, (vi)], the divisors of Xn that belong to D∗

n [cf. Proposition 1.3, (vii)]
are precisely the divisors at infinity of (Mlog

0,n+3)k whose generic points parame-
trize stable curves of genus zero with precisely two components, one of which con-
tains precisely two cusps. [Indeed, this follows immediately from the well-known
geometry of (Mlog

0,n+3)k.] In particular, the automorphisms of (Mlog

0,n+3)k arising
from the permutations of the ordering of the cusps permute the divisors that be-
long to D∗

n. Thus, we conclude that the outer modular symmetries ∈ Out(Πn)
normalize OutQS(Πn) = OutFC(Πn)cusp [cf. Proposition 1.3, (vii)]. Now let
τ ∈ Out(Πn) be an outer modular symmetry that arises from a permutation of
the subset {a, b, c, 1, 2, . . . , n − 1} ⊆ {a, b, c, 1, 2, . . . , n − 1, n} [cf. the notation of
Definition 1.1, (vi)]; α ∈ OutFCP(Πn)

⋂
OutFC(Πn)S ⊆ OutQS(Πn) [cf. Propo-

sition 1.3, (vii)]; ατ
def= τ−1 ◦ α ◦ τ ∈ OutQS(Πn). Then since τ is compatible

with the standard surjection Πn � Πn−1, it follows from the induction hypothesis
that α, ατ map to the same element ∈ OutQS(Πn−1) via the natural homomor-
phism OutQS(Πn) → OutQS(Πn−1) induced by this surjection. Thus, we conclude
from the injectivity condition in the statement of assertion (i) [cf. also Propo-
sition 1.3, (vii)] that α = ατ . Since the group of all permutations of the set
{a, b, c, 1, 2, . . . , n−1, n} is generated by the subgroups of permutations of the sub-
sets {a, b, c, 1, 2, . . . , n− 1} ⊆ {a, b, c, 1, 2, . . . , n − 1, n} and {1, 2, . . . , n− 1, n} ⊆
{a, b, c, 1, 2, . . . , n− 1, n}, we thus conclude that α ∈ OutFCS(Πn). This completes
the proof that OutFCP(Πn)

⋂
OutFC(Πn)S ⊆ OutFCS(Πn); the opposite inclusion

follows immediately from the definitions. This completes the proof of assertion (i).

In light of Corollary 1.10, (ii), assertions (ii) and (iii) follow immediately
from the definitions and the well-known geometry of X log

n [i.e., (Mlog

0,n+3)k]. Fi-
nally, we consider assertion (iv). By assertion (iii), it follows that the image of
the restriction OutFCS(Πn) → OutFC(ΠEx

) to OutFCS(Πn) of the natural homo-
morphism of Corollary 1.10, (iii), lies in OutFC(ΠEx

)�. Write π′ : Πn � Π2,
π′′ : Π2 � Π1 [so π = π′′ ◦ π′] for the standard surjections. Then the existence
of the factorization π ◦ σ = π′′ ◦ (π′ ◦ σ) : Πn � Π2 � Π1 — which is compati-
ble with elements of OutFCS(Πn) — implies that the image of the homomorphism
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OutFCS(Πn) → OutFC(ΠEx
) in fact lies in OutFC(ΠEx

)�+. This implies the desired
inclusion OutFCS(Πn) ⊆ OutFC(Πn)�+ and hence completes the proof of assertion
(iv). ©

Section 2: Injectivity for Degenerating Affine Curves

In the present §2, we generalize [cf. Corollary 2.3, (ii)] the injectivity asserted
in Corollary 1.12, (ii), to the case of arbitrary X log such that UX is affine, by
considering what happens when we allow X log to degenerate.

Let

· k◦
def= k be as in §1;

· R◦
def= k◦[[t]] — i.e., the ring of power series with coefficients in k◦;

· K◦ the quotient field of R◦;
· K an algebraic closure of K◦; η

def= Spec(K);
· R the integral closure of R◦ in K;
· Slog

◦ , Slog the log schemes obtained by equipping S◦
def= Spec(R◦), S

def=
Spec(R), respectively, with the log structures determined by the nonzero
regular functions;
· slog◦

def= Spec(k◦) ×S◦ S
log
◦ ;

· slog
def= Spec(k) ×S Slog.

Here, we wish to think of k as the residue field of R.

Next, let
X log

◦ → Slog
◦

be a stable log curve of type (g, r) [whose restriction to US◦ is a smooth log curve];

X log def= X log
◦ ×Slog

◦
Slog → Slog

X log
◦s

def= X log
◦ ×Slog

◦
slog◦ → slog◦ ; X log

s
def= X log

◦ ×Slog
◦
slog → slog

for the result of base-changing via the morphisms Slog → Slog
◦ , slog◦ → Slog

◦ , slog →
Slog
◦ . Thus, we are in a situation as discussed in §0. By ordering the cusps of X log

◦ ,
we obtain a classifying [1-]morphism Slog

◦ → Mlog

g,r. If n is a positive integer, then

by pulling back the natural [1-]morphism Mlog

g,r+n → Mlog

g,r obtained by “forgetting
the last n points” via this classifying morphism, we thus obtain a “log configuration
space”

X log
n◦ → Slog

◦

— i.e., whose restriction to US◦ is a “log configuration space” as in [24], Definition
2.1, (i). We shall write

X log
n → Slog; X log

n◦s → slog◦ ; X log
n,s → slog
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for the result of base-changing X log
n◦ → Slog

◦ to Slog, slog◦ , or slog. Thus, we may
apply the discussion of §0 to X log

n → Slog for arbitrary n. Also, we may apply the
theory of §1 by taking

X log
n,η

def= X log
n ×S η → η

to be the “X log
n → S” of §1; this results in a “Πn” of the form

Πn
def= πΣ

1 (X log
n,η)

— to which we may apply the specialization isomorphisms discussed in §0.

For i = 1, 2, write
prlogi : X log

2 → X log
1

for the projection to the factor labeled i, pri : X2 → X1 for the underlying mor-
phism of schemes, and pi : Π2 → Π1 for the surjection induced by prlogi .

Definition 2.1. Let iX ∈ {1, 2}. Suppose that Xs is singular and has iX
irreducible components, one of which we shall denote T ; if iX = 2, then we shall
write Q for the other irreducible component of Xs. Write UT ⊆ T (respectively,
[when iX = 2] UQ ⊆ Q) for the complement in T (respectively, [when iX = 2]
Q) of the nodes and cusps of Xs relative to the log structure of X log

s . Suppose
further that UT is a tripod. Let x ∈ X(S) be a cusp of X log whose restriction
xs ∈ Xs(s) ⊆ X(k) to s lies in T (⊆ Xs) [cf. Remark 2.1.1 below].

(i) Observe that the log structure on X log
2 determines on the fiber (X2)xs

of
the morphism pr1 : X2 → X1 (= X) over xs ∈ X(k) a structure of pointed stable
curve, which consists of iX + 1 irreducible components, iX of which — which we
shall denote T̈ and [when iX = 2] Q̈ — map isomorphically to T ⊆ Xs and [when
iX = 2] Q ⊆ Xs, respectively, via pr2 : X2 → X1 = X , the (iX + 1)-th of which —
which we shall denote Ëx — maps to the point xs ∈ Xs(s) via pr2. Let us refer to
T̈ and [when iX = 2] Q̈ as the sub-major cuspidal components at xs and to Ëx as
the sub-minor cuspidal component at xs. Thus, the complement in T̈ (respectively,
[when iX = 2] Q̈; Ëx) of the nodes and cusps [relative to the pointed stable curve
structure on (X2)xs

] of T̈ (respectively, [when iX = 2] Q̈; Ëx) — which we shall
refer to as the interior UT̈ of T̈ (respectively, [when iX = 2] UQ̈ of Q̈; UËx

of Ëx)
— determines a tripod UT̈ (respectively, [when iX = 2] hyperbolic curve UQ̈; tripod
UËx

). Moreover, pr2 induces isomorphisms UT̈
∼→ UT , [when iX = 2] UQ̈

∼→ UQ;
we have a diagram [cf. also Fig. 2 below]

Ëx � ν̈x ∈ T̈ � μ̈x ∈ Q̈

— where the final “∈ Q̈” is to be omitted if iX = 1; we refer to the unique node ν̈x
of (X2)xs

that lies over xs ∈ Xs(s) [via pr2] as the sub-nexus at xs and to each of
the remaining [one or two] nodes μ̈x of (X2)xs

as the internal nodes at x.

(ii) On the other hand, by applying Definition 1.4 to X log
n,η → η, we obtain

major and minor cuspidal components at xη [i.e., the restriction xη ∈ X(η) of x to
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η], as well as a nexus at xη — which we shall denote Fx, Ex ⊆ (X2)xη
, νx. Write

F x, Ex, νx for the closures of Fx, Ex, νx in (X2)x
def= X2 ×X1 S [where the fiber

product is taken with respect to the morphisms pr1 : X2 → X1, x : S → X1 = X ].
Thus, we have T̈ ⊆ F x, [when iX = 2] Q̈ ⊆ F x, Ëx ⊆ Ex, ν̈x ⊆ νx. Write

UFx
⊆ F x; UEx

⊆ Ex

for the open subschemes given by the complements of the closures of the nodes and
cusps of Fx, Ex. Thus, UEx

is a family of tripods over S; pr2 determines an open
immersion

UFx
↪→ X

whose image is the complement of the cusps of X [relative to the log structure of
X log].

(iii) Write T̃ → T for the normalization of T ; T̃ log for the log scheme obtained
by equipping T̃ with the log structure determined by the closed points of T̃ that
map to points of T\UT . Thus, U

�T is a tripod over s; we have a natural isomorphism
(T̃ ⊇) U

�T

∼→ UT (⊆ T ⊆ Xs). Write T̃ log
n → s for the n-th log configuration

space associated to U
�T [cf. §0]. Thus, we have a natural commutative diagram

T̃2 → X2,s⏐⏐�pr1

⏐⏐�pr1

T̃ → Xs

— where, by abuse of notation, we write pri : T̃2 → T̃1 = T̃ for the projection
to the factor labeled i [for i = 1, 2]; we write pri : X2,s → X1,s = Xs for the
restriction to the fibers over s of pri : X2 → X1 [for i = 1, 2]; the horizontal arrows
restrict to immersions on U

�T2
, U

�T ; the lower horizontal arrow is compatible with
the natural isomorphism (T̃ ⊇) U

�T

∼→ UT (⊆ T ⊆ Xs). Write (T̃2)xs
for the

fiber of pr1 : T̃2 → T̃1 over the point xs, where, by abuse of notation, we write
xs for the point ∈ T̃ (s) determined by xs ∈ Xs(s). Then (T̃2)xs

has precisely two
irreducible components which map isomorphically to Ëx ⊆ (X2)xs

, T̈ ⊆ (X2)xs
—

so (T̃2)xs
may be thought of as consisting of a diagram

Ëx � ν̈x ∈ T̈

— via the natural morphism T̃2 → X2,s. By abuse of notation, we shall also use
the notation Ëx, T̈ for the corresponding irreducible components of (T̃2)xs

. Write
Πtripod
n

def= πΣ
1 (T̃ log

n ).

(iv) By applying the specialization isomorphisms [cf. §0] associated to the
restriction of prlog1 : X log

2 → X log
1 to the result of base-changing via Slog → Slog

◦ the
completion of X1◦ = X◦ along the cusp of X◦ determined by x, we conclude that
the pointed stable curve structure on (X2)xs

[cf. (i)] determines a “semi-graph of
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anabelioids of pro-Σ PSC-type” as discussed in [20], Definition 1.1, (i) [cf. also the
discussion of [18], Appendix] whose associated “PSC-fundamental group” may be
identified with Π2/1. In particular, we obtain [conjugacy classes of] subgroups [cf.
[20], Definition 1.1, (ii)]

ΠT̈ ,ΠQ̈,ΠËx
,Πν̈x

,Πμ̈x
⊆ Π2/1

[where ΠQ̈ is to be omitted if iX = 1] corresponding to the sub-major and sub-minor
cuspidal components, as well as to the sub-nexus and the internal node(s) — which
we shall refer to as sub-major verticial, sub-minor verticial, sub-nexus, and internal
nodal, respectively. In a similar [but simpler] vein, by applying the specialization
isomorphisms [cf. §0] associated to X log → Slog, we obtain [conjugacy classes of]
subgroups

ΠT , ΠQ ⊆ Π1

[where ΠQ is to be omitted if iX = 1] — such that the morphism p2 : Π2 → Π1

determines isomorphisms

ΠT̈
∼→ ΠT ; ΠQ̈

∼→ ΠQ

[where the second isomorphism is to be omitted if iX = 1] — i.e., the sub-major
verticial subgroups may be thought of as defining sections of the projection p2 :
Π2 � Π1 over ΠT , [when iX = 2] ΠQ. On the other hand, p2 maps ΠËx

onto
a cuspidal inertia group of Π1 associated to x; in particular, p2(ΠËx

) is abelian.
Finally, we observe that for suitable choices within the various conjugacy classes
involved, we have natural inclusions

ΠËx
⊇ Πν̈x

⊆ ΠT̈ ⊇ Πμ̈x
⊆ ΠQ̈

[where ΠQ̈ is to be omitted if iX = 1] inside Π2/1.

(v) On the other hand, by applying Definition 1.4 to X log
n,η → η, we obtain

[conjugacy classes of] subgroups

ΠFx
,ΠEx

,Πνx
⊆ Π2/1

associated to Fx, Ex, νx [cf. (ii)] such that p2 determines an isomorphism ΠFx

∼→ Π1.
For suitable choices within the various conjugacy classes involved, we have natural
inclusions

ΠEx
⊇ Πνx

⊆ ΠFx
;

[inside Π2/1], as well as natural inclusions

ΠT̈ , ΠQ̈ ⊆ ΠFx

induced by the natural immersions UT̈ ↪→ UFx
, UQ̈ ↪→ UFx

[where “ΠQ̈”, “UQ̈ ↪→
UFx

” are to be omitted if iX = 1] by applying the isomorphisms

πΣ
1 ((UFx

×X X log) ×S s) ∼→ πΣ
1 (X log

s ) ∼→ πΣ
1 (X log) ∼→ πΣ

1 (UFx
×X X log)
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[arising from the log purity theorem and the specialization isomorphism for X log →
Slog], together with the isomorphisms πΣ

1 (UFx
×X X log) ∼→ πΣ

1 (UFx
) ∼→ ΠFx

[the
first of which arises from the log purity theorem]. In a similar [but simpler] vein,
we have equalities [of Π2/1-conjugacy classes of subgroups of Π2/1]

ΠËx
= ΠEx

; Πν̈x
= Πνx

induced by the natural immersion UËx
↪→ UEx

by applying the isomorphism
πΣ

1 (UEx
×S s) ∼→ πΣ

1 (UEx
) [arising from the log purity theorem and the specialization

isomorphism for the smooth log curve determined, up to unique isomorphism, by the
family of tripods UEx

→ S], together with the isomorphisms πΣ
1 (UEx

) ∼→ πΣ
1 (UEx

)
∼→ ΠEx

[the first of which arises from the log purity theorem].

(vi) One verifies immediately that the natural commutative diagram of (iii)
determines a natural morphism of exact sequences of profinite groups

1 −→ Πtripod
2/1 −→ Πtripod

2 −→ Πtripod
1 −→ 1⏐⏐� ⏐⏐� ⏐⏐�

1 −→ Π2/1 −→ Π2 −→ Π1 −→ 1

— where the vertical arrows are injective outer homomorphisms; the image of the
vertical morphism on the right is equal to ΠT . By abuse of notation, we shall
write Πtripod

2/1 (respectively, Πtripod
2 ; Πtripod

1 ) for the subgroup, well-defined up to
Π2/1- (respectively, Π2-; Π1-) conjugacy, determined by the image of the left-hand
(respectively, middle; right-hand) vertical arrow. Thus, for suitable choices within
the various conjugacy classes involved, we have natural inclusions

ΠËx
, ΠT̈ , Πν̈x

⊆ Πtripod
2/1

[inside Π2/1].

Remark 2.1.1. One verifies immediately that data as in Definition 2.1 exists
for arbitrary (g, r) such that (g, r) �= (0, 3) and r ≥ 1. Moreover, the case iX = 1
corresponds precisely to the case where (g, r) = (1, 1).

Proposition 2.2. (First Properties of Sub-major and Sub-minor Verti-
cial Subgroups) In the notation of Definition 2.1:

(i) ΠT̈ , [when iX = 2] ΠQ̈, ΠËx
, Πν̈x

, Πμ̈x
, ΠFx

, ΠEx
, Πνx

, Πtripod
2/1 are com-

mensurably terminal in Π2/1; ΠT , [when iX = 2] ΠQ are commensurably termi-
nal in Π1.

(ii) Suppose that one fixes Πνx
⊆ Π2/1 among its various Π2/1-conjugates.

Then the condition that there exist inclusions/equalities

Πνx
⊆ ΠEx

; Πνx
= Πν̈x

⊆ ΠT̈ ⊆ ΠFx

ΠËx
= ΠEx

; ΠËx
, ΠT̈ ⊆ Πtripod

2/1
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completely determines ΠEx
, Πν̈x

, ΠT̈ , ΠFx
, ΠËx

, and Πtripod
2/1 among their var-

ious Π2/1-conjugates.

(iii) In the notation of (ii), the compatible inclusions Πν̈x
⊆ ΠËx

⊆ Πtripod
2/1 ,

Πν̈x
⊆ ΠT̈ ⊆ Πtripod

2/1 , Πνx
⊆ ΠEx

⊆ Π2/1, Πνx
⊆ ΠFx

⊆ Π2/1, determine isomor-
phisms

lim−→
(
ΠËx

←↩ Πν̈x
↪→ ΠT̈

) ∼→ Πtripod
2/1

lim−→
(
ΠEx

←↩ Πνx
↪→ ΠFx

) ∼→ Π2/1

— where the inductive limits are taken in the category of pro-Σ groups.

Proof. Assertion (i) follows from [20], Proposition 1.2, (ii). Assertion (ii) follows
from the fact that “every nodal edge-like subgroup is contained in precisely two
verticial subgroups” [cf. [20], Proposition 1.5, (i)], together with the fact that
Πtripod

2/1 is topologically generated by ΠËx
, ΠT̈ [cf. assertion (iii)]. Assertion (iii)

follows by a similar argument to the argument applied in the proof of Proposition
1.5, (iii). ©

ν
..
x

μ
..
x

x

*

T Q
.. ....

xE

Π
2/1
tripod

Fig. 2: A degenerating affine curve equipped with an extra cusp “∗”.
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Corollary 2.3. (Injectivity for Non-tripod Degenerating Affine Curves)
In the notation of Definition 2.1 [cf. also Definition 1.1; Remark 2.1.1]:

(i) The natural inclusion Ξ2 ↪→ AutIFC(Π2) is an isomorphism.

(ii) The natural homomorphism

OutFC(Π2) → OutFC(Π1)

induced by p1 : Π2 � Π1 is injective.

(iii) We have: OutFCP(Π2) = OutFC(Π2).

Proof. First, we observe that assertion (ii) follows formally from assertion (i) and
Proposition 1.2, (iii). Next, we observe that assertion (iii) follows formally from
assertion (ii) and Propositions 1.2, (iii); 1.6, (iii). Thus, to complete the proof of
Corollary 2.3, it suffices to verify assertion (i). To this end, let α ∈ AutIFC(Π2).
Let us fix some Πνx

⊆ Π2/1 among its various Π2/1-conjugates; let ΠEx
, Πν̈x

, ΠT̈ ,
ΠFx

, ΠËx
, and Πtripod

2/1 be as in Proposition 2.2, (ii).

Since α ∈ AutIFC(Π2), it follows that α induces [relative to p1 or p2] an au-
tomorphism of Π1 that stabilizes every cuspidal inertia group of Π1. Thus, by
the non-resp’d portion of Proposition 1.3, (iv), we conclude that α stabilizes the
Π2/1-conjugacy classes of Πνx

= Πν̈x
, ΠFx

, ΠEx
= ΠËx

. In particular, α(Πνx
) =

ζ · Πνx
· ζ−1, for some ζ ∈ Π2/1. Since α ∈ AutIFC(Π2), and p2(Πνx

) is a cusp-
idal inertia group of Π1 associated to x, hence normally terminal in Π1 [cf. [20],
Proposition 1.2, (ii)], it thus follows that p2(ζ) ∈ p2(Πνx

), so [by replacing ζ by
an appropriate element ∈ ζ · Πνx

] we may assume without loss of generality that
ζ ∈ Π2/1

⋂
Π1\2 = Ξ2. Thus, by replacing α by the composite of α with a Ξ2-inner

automorphism, we may assume without loss of generality that α(Πνx
) = Πνx

. By
Proposition 2.2, (ii), we thus conclude that α(ΠFx

) = ΠFx
, α(ΠEx

) = ΠEx
. Since

α ∈ AutIFC(Π2), and p2 induces an isomorphism ΠFx

∼→ Π1 [cf. Definition 2.1, (v)],
we thus conclude that α restricts to the identity on ΠFx

. In particular, it follows
that α stabilizes and restricts to the identity on ΠT̈ . Since Πtripod

2/1 is topologically
generated by ΠËx

= ΠEx
, ΠT̈ [cf. Proposition 2.2, (iii)], we thus conclude that

α(Πtripod
2/1 ) = Πtripod

2/1 .

Now since α ∈ AutIFC(Π2), and Πtripod
2/1 is normally terminal in Π2/1 [cf. Propo-

sition 2.2, (i)], we thus conclude from the commutative diagram of Definition 2.1,

(vi) [i.e., by applying the natural isomorphism Πtripod
2

∼→ Πtripod
2/1

out
� Πtripod

1 — cf.

§0; Remark 1.1.1], that the automorphism of Πtripod
2/1 induced by α arises from an

automorphism αtripod ∈ Aut(Πtripod
2 ), which is easily verified to be F-admissible

[cf. Proposition 1.2, (i)]. Next, observe that since ΠËx
is normally terminal in

Π2/1 [cf. Proposition 2.2, (i)], it follows immediately from [20], Proposition 1.5,
(i), that every cuspidal inertia group of Π2/1 that is contained in ΠËx

and Π2/1-
conjugate to a cuspidal inertia group associated to a cusp of UËx

is, in fact, equal
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to a cuspidal inertia group associated to a cusp of UËx
. Since α is C-admissible,

and α ∈ AutIFC(Π2) restricts to the identity on ΠT̈ , we thus conclude that αtripod

is IFC-admissible, i.e., αtripod ∈ AutIFC(Πtripod
2 ).

On the other hand, by Corollary 1.12, (i), it follows that αtripod lies in the
image of the natural inclusion Ξtripod

2 ↪→ AutIFC(Πtripod
2 ) [where we write Ξtripod

2

for the analogue of “Ξ2” for Πtripod
2 ]. In particular, we conclude that α induces

an inner automorphism of Πtripod
2/1 . Since α restricts to the identity on ΠT̈ , which

is center-free [cf. Remark 1.1.1] and normally terminal in Πtripod
2/1 [cf. Proposition

2.2, (i)], it thus follows that α restricts to the identity on Πtripod
2/1 , hence also on

ΠËx
= ΠEx

. Since Π2/1 is topologically generated by ΠEx
, ΠFx

[cf. Proposition 2.2,
(iii)], we thus conclude that α restricts to the identity on Π2/1, hence [by applying

the natural isomorphism Π2
∼→ Π2/1

out
� Π1 — cf. §0; Remark 1.1.1] that α is the

identity. This completes the proof of assertion (i). ©

Before proceeding, we recall the following well-known result.

Lemma 2.4. (FC-Admissible Permutations of Cusps) There exist el-
ements ∈ OutFC(Πn) that induce, relative to the standard surjection Πn � Π1,
arbitrary permutations of the set of conjugacy classes of cuspidal inertia groups
of Π1 [i.e., the set of cusps of X log].

Proof. One way to verify Lemma 2.4 is by thinking of Πn as the pro-Σ completion
of the topological fundamental group of the n-th configuration space associated
to [i.e., the complement of the various diagonals in the product of n copies of] a
topological surface X of type (g, r) [cf. the theory of [24], §7]. Then it is easy
to construct a homeomorphism of X that induces an arbitrary permutation of the
cusps; one then verifies immediately that such a homeomorphism induces a home-
omorphism of the n-th configuration space associated to X that gives rise to an
element ∈ OutFC(Πn) satisfying the conditions in the statement of Lemma 2.4.

Alternatively, one may give a more log scheme-theoretic proof by means of the
objects introduced in the discussion preceding Definition 2.1 as follows. If r ≤ 1,
then there is nothing to show. Thus, we suppose that r ≥ 2. Then [by applying
the specialization isomorphisms of §0] it suffices to verify the existence of auto-
morphisms of X log

s over slog that induce arbitrary transpositions [i.e., permutations
that switch two elements and leave the remaining elements fixed] of the set of cusps
of X log

s . If (g, r) = (0, 3) [i.e., X log
s is a tripod], then the existence of such auto-

morphisms of X log
s [over slog] follows immediately from the well-known structure

of tripods. Thus, we may assume that (g, r) �= (0, 3). This assumption implies [cf.
Remark 2.1.1] that we may suppose that we are in the situation of Definition 2.1,
and that precisely two of the cusps of the tripod UT arise from cusps a, b of X log

s .
Then [by the case where (g, r) = (0, 3), which has already been verified] UT admits
an automorphism [over s] that switches the two cusps of UT corresponding to a,
b and leaves the remaining cusp of UT fixed. Moreover, one verifies immediately
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that such an automorphism of UT extends to an automorphism of X log
s [over slog]

that switches a and b and restricts to the identity on Q [hence leaves the remaining
cusps of X log

s fixed]. This completes the proof of Lemma 2.4. ©

Section 3: Conditional Surjectivity for Affine Curves

In the present §3, we prove a certain special case [cf. Corollary 3.3] of the
surjectivity portion of our main result [cf. Theorem 4.1 below] for affine hyperbolic
curves. The key observation is that the technical obstacles observed, relative to
verifying surjectivity, in Remarks 1.13.1, 1.13.2 may be circumvented if one replaces
“Π2 � Π1” by “Π3 � Π2” and works with the subset “�+” of Definition 1.11, (ii).

We return to the notation of §1 [cf. especially the notation of Definition 1.4
and of the discussion preceding Definition 1.8].

Definition 3.1. Let x ∈ X(k) be a cusp of X log. Write x ∈ X2(k) for the nexus
νx [cf. Definition 1.4, (i)].

(i) Observe that the log structure on X log
3 determines on the fiber (X3)x of the

morphism pr12 : X3 → X2 over the point x ∈ X2(k) a structure of pointed stable
curve, which consists of three irreducible components. Of these three irreducible
components, there is a unique irreducible component F x — which we shall refer to
as the quasi-major cuspidal component of (X3)x — that maps isomorphically to X
via pr3 : X3 → X1 = X ; there is a unique irreducible component Lx — which we
shall refer to as the link cuspidal component of (X3)x — that intersects F x at a
single point; there is a unique irreducible component Ex — which we shall refer to
as the quasi-minor cuspidal component of (X3)x — that intersects Lx at a single
point. [Thus, Lx, Ex map to the point x ∈ X(k) via pr3.] The complement in
F x (respectively, Lx; Ex) of the nodes and cusps [relative to the pointed stable
curve structure on (X3)x] of F x (respectively, Lx; Ex) — which we shall refer to
as the interior UFx

of F x (respectively, ULx
of Lx; UEx

of Ex) — determines a
hyperbolic curve UFx

(respectively, tripod ULx
; tripod UEx

). Moreover, pr3 induces

isomorphisms UFx

∼→ UX , Fx
∼→ X .

(ii) By applying the specialization isomorphisms [cf. §0] associated to the
restriction of prlog12 : X log

3 → X log
2 to the completion of X2 along x, we conclude

that the pointed stable curve structure on (X3)x [cf. (i)] determines a “semi-graph
of anabelioids of pro-Σ PSC-type” as discussed in [20], Definition 1.1, (i) [cf. also the
discussion of [18], Appendix] whose associated “PSC-fundamental group” may be
identified with Π3/2. In particular, the quasi-major, link, and quasi-minor cuspidal
components determine [conjugacy classes of] verticial subgroups [cf. [20], Definition
1.1, (ii)]

ΠFx
, ΠLx

, ΠEx
⊆ Π3/2
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— which we shall refer to as quasi-major, link, and quasi-minor, respectively. Thus,
the morphism p3 : Π3 → Π1 determines an isomorphism

ΠFx

∼→ Π1

— i.e., the quasi-major verticial subgroups may be thought of as defining sections of
the projection p3 : Π3 � Π1. On the other hand, p3 maps ΠLx

, ΠEx
onto cuspidal

inertia groups of Π1 associated to x; in particular, p3(ΠLx
), p3(ΠEx

) are abelian.
Finally, let us refer to the node νx ∈ Ex

⋂
Lx (respectively, μ

x
∈ Lx

⋂
F x) of

(X2)x as the x-minor-nexus (respectively, x-major-nexus) [of (X3)x] — so [cf. Fig.
3 below]

Ex � νx ∈ Lx � μ
x

∈ F x

— and to the [nodal] edge-like subgroup [cf. [20], Definition 1.1, (ii)]

Πνx
⊆ Π3/2 (respectively, Πμ

x
⊆ Π3/2)

determined up to conjugacy by νx (respectively, μ
x
) as an x-minor-nexus (respec-

tively, x-major-nexus) subgroup. Thus, for suitable choices within the various con-
jugacy classes involved, we have natural inclusions

ΠEx
⊇ Πνx

⊆ ΠLx
⊇ Πμ

x
⊆ ΠFx

[inside Π3/2].

(iii) We shall refer to

Bν
def= Ex

⋃
Lx (respectively, Bμ

def= Lx
⋃

F x)

as the ν-bridge (respectively, μ-bridge) of (X3)x. If the various choices within
conjugacy classes are made so that the natural inclusions of (ii) hold, then we shall
refer to the subgroup [well-defined up to Π3/2-conjugacy]

ΠBν
⊆ Π3/2 (respectively, ΠBμ

⊆ Π3/2)

topologically generated by ΠEx
and ΠLx

(respectively, by ΠLx
and ΠFx

) as the
ν-bridge subgroup (respectively, μ-bridge subgroup).

(iv) Recall the subgroups IFx
⊆ DFx

⊆ Π2 (respectively, IEx
⊆ DEx

⊆ Π2) of
Proposition 1.6 (respectively, 1.7). By applying the specialization isomorphisms of
§0 first over the completion of Fx (respectively, Ex) along x, and then over the com-
pletion of X2 along the generic point of UFx

(respectively, UEx
), we conclude that

the outer action of DFx
(respectively, DEx

) on Π3/2 stabilizes the Π3/2-conjugacy
classes of ΠEx

, Πνx
, and ΠBμ

(respectively, of ΠBν
, Πμ

x
, and ΠFx

). Since, more-

over, ΠEx
, Πνx

, and ΠBμ
(respectively, of ΠBν

, Πμ
x
, and ΠFx

) are commensurably

terminal in Π3/2 [cf. Proposition 3.2, (i), below], it follows that this outer action
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determines outer actions of DFx
(respectively, DEx

) on ΠEx
, Πνx

, and ΠBμ
(respec-

tively, of ΠBν
, Πμ

x
, and ΠFx

), whose restriction to IFx
(respectively, IEx

) is trivial

[cf. the theory of specialization isomorphisms reviewed in §0]. Thus, we obtain
outer actions of DFx

/IFx

∼→ ΠFx
(respectively, DEx

/IEx

∼→ ΠEx
) on ΠEx

, Πνx
, and

ΠBμ
(respectively, of ΠBν

, Πμ
x
, and ΠFx

). Since the irreducible component of

X3|UFx
(respectively, X3|UEx

) [where “|” is taken with respect to pr12 : X3 → X2]
determined by Ex (respectively, F x) descends from UFx

(respectively, UEx
) to k

— i.e., is naturally isomorphic to UFx
×k Ex (respectively, UEx

×k F x) — we thus
conclude that the outer action of ΠFx

(respectively, ΠEx
) on ΠEx

(respectively, on
ΠFx

) is trivial.

(v) On the other hand, the outer action of ΠFx
on ΠBμ

may be made more

explicit, as follows. Write xlog def= X log ×X x. Recall that the geometric fibers of
prlog1 : X log

3 → X log
1 = X log over points of UX may be regarded as 2-nd log configu-

ration spaces associated to the smooth log curves determined by the corresponding
fibers of prlog1 : X log

2 → X log
1 = X log [cf. [24], Remark 2.1.2]. In a similar way, even

though the fiber (X log
2 )xlog of prlog1 over xlog is a non-smooth stable log curve, we

may think of the fiber (X log
3 )xlog of prlog12 over xlog as the “2-nd log configuration

space” associated to (X log
2 )xlog — i.e., in the sense that it may be obtained as the

pull-back of the [1-]morphism Mlog

g,r+3 → Mlog

g,r+1 [determined by forgetting the last

two sections] via the classifying [1-]morphism xlog → Mlog

g,r+1. If we forget the vari-
ous log structures involved, then it follows from this point of view that the natural
inclusion X ∼→ Fx ↪→ (X2)x fits into a natural commutative diagram

X2 ↪→ (X3)x⏐⏐�pr1

⏐⏐�pr12

X ↪→ (X2)x

— where [by abuse of notation] we use the notation “pr12” to denote the appropriate
restriction of pr12. Now one verifies immediately [cf. Definition 2.1, (vi)] that this
commutative diagram determines a natural morphism of exact sequences of profinite
groups

1 −→ Π2/1 −→ Π2 −→ Π1 −→ 1⏐⏐� ⏐⏐� ⏐⏐�
1 −→ Π3/2 −→ Π3/1 −→ Π2/1 −→ 1

— where the vertical arrows are injective outer homomorphisms; the image of the
vertical morphism on the left is equal to ΠBμ

; the image of the vertical morphism
on the right is equal to ΠFx

. In particular, this commutative diagram of profinite
groups allows one to identify the outer action of ΠFx

on ΠBμ
with the outer action

of Π1 on Π2/1.
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(vi) In a similar vein, the outer action of ΠEx
on ΠBν

may be made more
explicit, as follows. Write T log for the smooth log curve over k determined by the
tripod Ex; T log

n for the corresponding n-th log configuration space [where n ≥ 1 is an
integer]; Πtripod

n
def= πΣ

1 (T log
n ). Then just as in (v), we obtain a natural commutative

diagram
T2 ↪→ (X3)x⏐⏐�pr1

⏐⏐�pr12

T ↪→ (X2)x

— where we use the notation “pr12” as in (v). Moreover, just as in (v) [cf. also
Definition 2.1, (vi)], this commutative diagram determines a natural morphism of
exact sequences of profinite groups

1 −→ Πtripod
2/1 −→ Πtripod

2 −→ Πtripod
1 −→ 1⏐⏐� ⏐⏐� ⏐⏐�

1 −→ Π3/2 −→ Π3/1 −→ Π2/1 −→ 1

— where the vertical arrows are injective outer homomorphisms; the image of the
vertical morphism on the left is equal to ΠBν

; the image of the vertical morphism
on the right is equal to ΠEx

. In particular, this commutative diagram of profinite
groups allows one to identify the outer action of ΠEx

on ΠBν
with the outer action

of Πtripod
1 on Πtripod

2/1 .

Proposition 3.2. (First Properties of Quasi-Major, Link, and Quasi-
Minor Verticial Subgroups) In the notation of Definition 3.1:

(i) Πνx
, Πμ

x
, ΠEx

, ΠLx
, ΠFx

, ΠBν
, and ΠBμ

, are commensurably terminal
in Π3/2.

(ii) Suppose that one fixes Πνx
⊆ Π3/2 (respectively, Πμ

x
⊆ Π3/2) among its

various Π3/2-conjugates. Then the condition that there exist inclusions

Πνx
⊆ ΠEx

; Πνx
⊆ ΠLx

; Πνx
⊆ ΠBμ

(respectively, Πμ
x
⊆ ΠBν

; Πμ
x
⊆ ΠLx

; Πμ
x
⊆ ΠFx

)

completely determines ΠEx
, ΠLx

, ΠBν
, and ΠBμ

(respectively, ΠBν
, ΠBμ

, ΠLx
,

and ΠFx
) among their various Π3/2-conjugates.

(iii) In the notation of (ii), the compatible inclusions Πνx
⊆ ΠEx

⊆ ΠBν
⊆

Π3/2, Πνx
⊆ ΠLx

⊆ ΠBν
⊆ Π3/2, Πμ

x
⊆ ΠLx

⊆ ΠBμ
⊆ Π3/2, Πμ

x
⊆ ΠFx

⊆ ΠBμ
⊆
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Π3/2, determine isomorphisms

lim−→
(
ΠEx

←↩ Πνx
↪→ ΠLx

) ∼→ ΠBν

lim−→
(
ΠEx

←↩ Πνx
↪→ ΠBμ

) ∼→ Π3/2

lim−→
(
ΠLx

←↩ Πμ
x
↪→ ΠFx

) ∼→ ΠBμ

lim−→
(
ΠBν

←↩ Πμ
x
↪→ ΠFx

) ∼→ Π3/2

— where the inductive limits are taken in the category of pro-Σ groups.

(iv) The operation of restriction to the various subgroups involved determines
a bijection between

the set of outer automorphisms of Π3/2 that stabilize the Π3/2-conjugacy
classes of Πνx

, Πμ
x
, ΠEx

, ΠLx
, ΠFx

, ΠBν
, and ΠBμ

and
the set of pairs αν ∈ Out(ΠBν

), αμ ∈ Out(ΠBμ
)

such that: (a) αν (respectively, αμ) stabilizes the ΠBν
- (respectively, ΠBμ

-) con-
jugacy classes of ΠEx

, Πνx
, ΠLx

, and Πμ
x

(respectively, of Πνx
, ΠLx

, Πμ
x
, and

ΠFx
); (b) αν and αμ induce [cf. (a); (i)] the same element ∈ Out(ΠLx

).

Proof. Assertions (i), (ii), (iii) follow from precisely the same arguments applied
to prove assertions (i), (ii), and (iii) of Proposition 1.5. In light of assertions (i),
(ii), (iii), assertion (iv) follows, in a straightforward manner, from the fact that
ΠLx

is center-free [cf. Remark 1.1.1], together with the fact “every nodal edge-like
subgroup is contained in precisely two verticial subgroups” [cf. [20], Proposition
1.5, (i); [20], Proposition 1.2, (i)], which one applies, when verifying (a) for αν
(respectively, αμ), first to Πμ

x
(respectively, Πνx

), and then to Πνx
(respectively,

Πμ
x
). ©

Corollary 3.3. (Conditional Surjectivity for Affine Curves) Suppose that
X log is of type (g, r), where r ≥ 1. Then OutFC(Π2)�+ ⊆ OutFC(Π2) is contained
in the image of the natural homomorphism

OutFC(Π3) → OutFC(Π2)

induced by p12 : Π3 � Π2.

Proof. Let β2 ∈ OutFC(Π2)�+; α2 ∈ AutFC(Π2) an automorphism that lifts β2.
To complete the proof of Corollary 3.3, it suffices to construct an α3 ∈ AutFC(Π3)
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that lifts α2. Write x ∈ X(k) for the cusp that exhibits β2 as an element of
OutFC(Π2)�+ [cf. Definition 1.11, (ii)].

−E−x

*1
*2−−

x

Bμ

−L−x

−−x −x

−F−x

B
−

ν μ−

−

ν

−

−
Fig. 3: An affine curve equipped with two extra cusps “∗1”, “∗2”.

(x is the cusp that corresponds to x)

Next, let us fix Πνx
,ΠEx

,ΠFx
⊆ Π2/1 as in Proposition 1.5, (ii). By the non-

resp’d portion of Proposition 1.3, (iv), we may assume without loss of generality
that α2 stabilizes Πνx

, ΠEx
, and ΠFx

. Write α2/1
def= α2|Π2/1 ∈ AutFC(Π2/1),

αE2/1
def= α2|ΠEx

∈ AutFC(ΠEx
), αF2/1

def= α2|ΠFx
∈ AutFC(ΠFx

) for the respective
restrictions of α2 to Π2/1, ΠEx

, ΠFx
; β2/1 ∈ OutFC(Π2/1), βE2/1 ∈ OutFC(ΠEx

)�+,
βF2/1 ∈ OutFC(ΠFx

) for the resulting outer automorphisms.

Next, let us recall the outer isomorphisms Π2/1
∼→ ΠBμ

, Πtripod
1

∼→ ΠEx
,

Πtripod
2/1

∼→ ΠBν
implicit [cf. Propositions 1.5, (i); 3.2, (i)] in the natural mor-

phisms of exact sequences of Definition 3.1, (v), (vi). Here, we note that it follows
from the definitions that in fact, we have an equality Πtripod

1 = ΠEx
[i.e., with-

out any indeterminacy with respect to composition with an inner automorphism].
By conjugating β2/1, βE2/1, respectively, by the first two of these outer isomor-

phisms, we thus obtain elements β
μ

3/2 ∈ OutFC(ΠBμ
), βtripod

1 ∈ OutFC(Πtripod
1 )�+,
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together with a particular lifting αtripod
1 ∈ AutFC(Πtripod

1 ) of βtripod
1 . By the def-

inition of OutFC(Πtripod
1 )�+ [cf. Definition 1.11, (i)], it follows that βtripod

1 lifts
to a unique [cf. Corollary 1.12, (ii)] element βtripod

2 ∈ OutFC(Πtripod
2 )S. Write

βtripod
2/1 ∈ OutFC(Πtripod

2/1 ) for the restriction “βtripod
2 |Πtripod

2/1
” determined by the lift-

ing αtripod
1 ; βν3/2 ∈ OutFC(ΠBν

) for the result of conjugating βtripod
2/1 by the outer

isomorphism Πtripod
2/1

∼→ ΠBν
.

Next, let us observe that since α2/1 stabilizes Πνx
⊆ ΠEx

[where we note that,
from the point of view of ΠEx

, the subgroup Πνx
is the cuspidal inertia group

associated to one of the cusps of the tripod UEx
], it follows from the non-resp’d

portion of Proposition 1.3, (iv), applied to the outer automorphism βtripod
2 of Πtripod

2

[cf. also the lifting αtripod
1 ], that βν3/2 stabilizes the ΠBν

-conjugacy classes of ΠEx
,

ΠLx
, Πνx

, Πμ
x

hence [cf. Proposition 3.2, (i)] induces elements βE3/2 ∈ OutFC(ΠEx
),

β
L
3/2 ∈ OutFC(ΠLx

). Moreover, it follows from Proposition 1.2, (iii), in the case

of βE3/2, and from Corollaries 1.12, (ii), (iii); 1.14, (i), (iii), in the case of βL3/2
[where we note that from the point of view of the situation of Corollary 1.14, (iii),
Lx that corresponds to the minor cuspidal component, while Ex corresponds to
the major cuspidal component], that, for any outer isomorphisms Πtripod

1
∼→ ΠEx

,

Πtripod
1

∼→ ΠLx
that arise scheme-theoretically [i.e., from isomorphisms of k-schemes

UT
∼→ UEx

, UT
∼→ ULx

], the result of conjugating βE3/2, β
L
3/2, respectively, by these

outer isomorphisms yields elements ∈ OutFC(Πtripod
1 ) both of which are equal to

βtripod
1 . [Here, we note that it is of crucial importance that we know that βtripod

1 ∈
OutFC(Πtripod

1 )� — i.e., not just ∈ OutFC(Πtripod
1 )! — since this symmetry of

βtripod
1 allows one to ignore the issue of “precisely which cusp is sent to which” by

the various scheme-theoretic isomorphisms of tripods that appear.] In particular,
it follows from the definition of β

μ

3/2 and βtripod
1 that the restriction of β

μ

3/2 to ΠLx

[cf. Proposition 3.2, (i)] is equal to β
L
3/2. Thus, it makes sense to glue β

μ

3/2 ∈
OutFC(ΠBμ

), βν3/2 ∈ OutFC(ΠBν
) along ΠLx

so as to obtain an element

β3/2 ∈ OutFC(Π3/2)

as in Proposition 3.2, (iv), that restricts to β
μ

3/2 on ΠBμ
and to βν3/2 on ΠBν

.

Next, we consider the extent to which β3/2 is compatible, relative to α2/1, with
the natural outer action of Π2/1 on Π3/2. In particular, let us consider the following
assertion:

(∗) β3/2 ∈ OutFC(Π3/2) is compatible, relative to α2/1, with the natural outer
actions of ΠEx

(⊆ Π2/1) and ΠFx
(⊆ Π2/1) on Π3/2.

Now I claim that to complete the proof of Corollary 3.3, it suffices to verify (∗).
Indeed, since Π2/1 is topologically generated by ΠEx

, ΠFx
[cf. Proposition 1.5,
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(iii)], it follows from (∗) that β3/2 ∈ OutFC(Π3/2) is compatible, relative to α2/1,
with the natural outer action of Π2/1. Thus, by applying the natural isomorphism

Π3/1
∼→ Π3/2

out
� Π2/1 [cf. §0; Remark 1.1.1], we conclude that β3/2, α2/1 determine

an element β3/1 ∈ Out(Π3/1). It is immediate from the construction of β3/1 that
β3/1 is C-admissible. Since β3/1 preserves the conjugacy class of inertia groups as-
sociated to the diagonal divisor in the geometric generic fiber of pr1 : X3 → X1 [cf.
the argument applied in the proof of Proposition 1.3, (vii)], it follows from Proposi-
tion 1.2, (i), that β3/1 is FC-admissible, i.e., β3/1 ∈ OutFC(Π3/1). Next, let us write
α1 ∈ OutFC(Π1) for the automorphism induced by α3 via p1 : Π3 � Π1. Since the
natural homomorphism OutFC(Π3/1) → OutFC(Π2/1) is injective by Corollary 2.3,
(ii), we thus conclude [from the fact that β2/1 is manifestly compatible, relative to
α1, with the natural outer action of Π1 on Π2/1] that β3/1 is compatible, relative
to α1, with the natural outer action of Π1 on Π3/1. In particular, by applying the

natural isomorphism Π3
∼→ Π3/1

out
� Π1 [cf. §0; Remark 1.1.1], we conclude that

β3/1, α1 determine an element β3 ∈ OutFC(Π3) [cf. Proposition 1.2, (i)] that lifts
β2, as desired. This completes the proof of the claim.

Finally, we proceed to verify the assertion (∗). To this end, let us observe that
p13 : Π3 � Π2 (respectively, p23 : Π3 � Π2) induces a surjection

φ1 : Π3/2 � Π2/1 (respectively, φ2 : Π3/2 � Π2/1)

whose kernel is topologically normally generated by the cuspidal inertia groups
in Π3/2 that correspond to the cusp parametrized by the factor labeled “2” (re-
spectively, “1”) of X log

3 . That is to say, φ1 (respectively, φ2) corresponds to the
operation of “forgetting the cusp parametrized by the factor labeled ‘2’ (respectively,
‘1’) of X log

3 ”. Note that φ1 (respectively, φ2) induces isomorphisms ΠEx

∼→ ΠEx
,

ΠFx

∼→ ΠFx
(respectively, ΠLx

∼→ ΠEx
, ΠFx

∼→ ΠFx
, ΠBμ

∼→ Π2/1). In the fol-
lowing, if “(−)” is an element of Π3/1, then let us write γ(−) ∈ Aut(Π3/2) for the
automorphism induced by conjugation by “(−)”.

Next, let us fix Πμ
x
, ΠBν

, ΠBμ
, ΠLx

, and ΠFx
as in the resp’d portion of Propo-

sition 3.2, (ii). Here, we may assume without loss of generality that φ2(Πμ
x
) = Πνx

.
Now let σ2/1 ∈ ΠEx

⊆ Π2/1; σ3/1 ∈ Π3/1 a lifting of σ2/1. Note that γσ3/1 stabilizes
the Π3/2-conjugacy classes of ΠBν

, Πμ
x
, and ΠFx

[cf. the discussion of Definition

3.1, (iv)]. In particular, by replacing σ3/1 by the product of σ3/1 with an appropri-
ate element of Π3/2, we may assume without loss of generality that γσ3/1 stabilizes
the subgroups ΠBν

, Πμ
x
, and ΠFx

[cf. Proposition 3.2, (ii)]. Next, let us observe

that [since p23 induces the natural surjection Π2/1 � Π1; the kernel of this surjec-
tion contains σ2/1 ∈ ΠEx

] γσ3/1 induces, relative to φ2, an inner automorphism of
Π2/1. Since φ2 is surjective, it thus follows that there exists a ζ ∈ Π3/2 such that
γσ3/1·ζ induces, relative to φ2, the identity automorphism of Π2/1. On the other
hand, since φ2(Πμ

x
) = Πνx

is normally terminal in Π2/1 [cf. Proposition 1.5, (i)],

it follows that φ2(ζ) ∈ Πνx
. In particular, by replacing σ3/1 by the product of σ3/1

with an appropriate element of Πμ
x
, we may assume without loss of generality that:
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(a) γσ3/1 stabilizes the subgroups ΠBν
, Πμ

x
, and ΠFx

; (b) γσ3/1 induces, relative to
φ2, the identity automorphism of Π2/1. We shall refer to a lifting σ3/1 of σ2/1 that
satisfies these conditions (a), (b) as φ2-admissible.

Now let τ2/1
def= α2/1(σ2/1) ∈ Π2/1; σ3/1, τ3/1 ∈ Π3/1 φ2-admissible liftings of

σ2/1, τ2/1; α3/2 ∈ Aut(Π3/2) an automorphism that gives rise to β3/2. Since [by
construction] β3/2 stabilizes the Π3/2-conjugacy classes of the subgroups ΠBν

, Πμ
x
,

and ΠFx
[cf. Proposition 3.2, (iv)], we may assume without loss of generality [cf.

Proposition 3.2, (ii)] that α3/2 stabilizes the subgroups ΠBν
, Πμ

x
, and ΠFx

. Now
to verify that “β3/2 is compatible, relative to α2/1, with the natural outer action of
ΠEx

” [cf. (∗)], it suffices to verify that:

(∗E) We have: γτ3/1 = α3/2 ◦ γσ3/1 ◦ α−1
3/2.

Next, let us recall from Definition 3.1, (iv), that γτ3/1 , γσ3/1 induce the trivial outer
automorphism on ΠFx

; in particular, the equality of (∗E) holds over ΠFx
, up to

composition with an ΠFx
-inner automorphism. Moreover, by the construction of

β3/2, it follows from Definition 3.1, (vi), that the equality of (∗E) holds over ΠBν
,

up to composition with an ΠBν
-inner automorphism. Since α3/2, γτ3/1 , and γσ3/1

all stabilize Πμ
x

[which is normally terminal in Π3/2 — cf. Proposition 3.2, (i)],

we thus conclude that the equality of (∗E) holds up to composition with some
δ ∈ Aut(Π3/2) that stabilizes the subgroups ΠBν

, Πμ
x
, and ΠFx

, and, moreover,

restricts to [possibly distinct!] Πμ
x
-inner automorphisms over ΠBν

[hence over

ΠLx
] and ΠFx

. [That is to say, δ is a sort of abstract profinite analogue of a Dehn
twist!] On the other hand, since γτ3/1 , γσ3/1 induce, relative to φ2, the identity
automorphism of Π2/1, it follows that δ induces, relative to φ2, the identity auto-
morphism of Π2/1. Since φ2 induces isomorphisms of center-free [cf. Remark 1.1.1]
profinite groups ΠLx

∼→ ΠEx
, ΠFx

∼→ ΠFx
, we thus conclude that δ is the identity

automorphism. This completes the proof of (∗E).

In a similar vein, let us fix Πνx
, ΠBν

, ΠBμ
, ΠEx

, and ΠLx
as in the non-resp’d

portion of Proposition 3.2, (ii). Here, we may assume without loss of generality
that φ1(Πνx

) = Πνx
. Now let σ2/1 ∈ ΠFx

⊆ Π2/1; σ3/1 ∈ Π3/1 a lifting of σ2/1.
Note that γσ3/1 stabilizes the Π3/2-conjugacy classes of ΠEx

, Πνx
, and ΠBμ

[cf. the
discussion of Definition 3.1, (iv)]. In particular, by replacing σ3/1 by the product of
σ3/1 with an appropriate element of Π3/2, we may assume without loss of generality
that γσ3/1 stabilizes the subgroups ΠEx

, Πνx
, and ΠBμ

[cf. Proposition 3.2, (ii)].
Next, let us observe that [since φ1 arises from p13] γσ3/1 induces, relative to φ1, an
inner automorphism of Π2/1. Since φ1 is surjective, it thus follows that there exists
a ζ ∈ Π3/2 such that γσ3/1·ζ induces, relative to φ1, the identity automorphism of
Π2/1. On the other hand, since φ1(Πνx

) = Πνx
is normally terminal in Π2/1 [cf.

Proposition 1.5, (i)], it follows that φ1(ζ) ∈ Πνx
. In particular, by replacing σ3/1 by

the product of σ3/1 with an appropriate element of Πνx
, we may assume without

loss of generality that: (a) γσ3/1 stabilizes the subgroups ΠEx
, Πνx

, and ΠBμ
; (b)
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γσ3/1 induces, relative to φ1, the identity automorphism of Π2/1. We shall refer to
a lifting σ3/1 of σ2/1 that satisfies these conditions (a), (b) as φ1-admissible.

Now let τ2/1
def= α2/1(σ2/1) ∈ Π2/1; σ3/1, τ3/1 ∈ Π3/1 φ1-admissible liftings of

σ2/1, τ2/1; α3/2 ∈ Aut(Π3/2) an automorphism that gives rise to β3/2. Since [by
construction] β3/2 stabilizes the Π3/2-conjugacy classes of the subgroups ΠEx

, Πνx
,

and ΠBμ
[cf. Proposition 3.2, (iv)], we may assume without loss of generality [cf.

Proposition 3.2, (ii)] that α3/2 stabilizes the subgroups ΠEx
, Πνx

, and ΠBμ
. Now

to verify that “β3/2 is compatible, relative to α2/1, with the natural outer action of
ΠFx

” [cf. (∗)], it suffices to verify that:

(∗F ) We have: γτ3/1 = α3/2 ◦ γσ3/1 ◦ α−1
3/2.

Next, let us recall from Definition 3.1, (iv), that γτ3/1 , γσ3/1 induce the trivial outer
automorphism on ΠEx

; in particular, the equality of (∗F ) holds over ΠEx
, up to

composition with an ΠEx
-inner automorphism. Moreover, by the construction of

β3/2, it follows from Definition 3.1, (v), that the equality of (∗F ) holds over ΠBμ
,

up to composition with an ΠBμ
-inner automorphism. Since α3/2, γτ3/1 , and γσ3/1

all stabilize Πνx
[which is normally terminal in Π3/2 — cf. Proposition 3.2, (i)],

we thus conclude that the equality of (∗F ) holds up to composition with some
δ ∈ Aut(Π3/2) that stabilizes the subgroups ΠEx

, Πνx
, and ΠBμ

, and, moreover,
restricts to [possibly distinct!] Πνx

-inner automorphisms over ΠEx
and ΠBμ

. [That
is to say, δ is a sort of abstract profinite analogue of a Dehn twist!] On the other
hand, since γτ3/1 , γσ3/1 induce, relative to φ1, the identity automorphism of Π2/1, it
follows that δ induces, relative to φ1, the identity automorphism of Π2/1. Since φ1

induces isomorphisms of center-free [cf. Remark 1.1.1] profinite groups ΠEx

∼→ ΠEx
,

ΠFx

∼→ ΠFx
, we thus conclude that δ is the identity automorphism. This completes

the proof of (∗F ), and hence of Corollary 3.3. ©

Corollary 3.4. (Tautological Validity of “�”, “�+”) Suppose that X log is
of type (g, r), where r ≥ 0. Then:

(i) We have: OutFCP(Π3)cusp ⊆ OutFC(Π3)�.

(ii) We have: OutFCP(Π4)cusp ⊆ OutFC(Π4)�+.

(iii) Suppose that r ≥ 1. Then OutFC(Π3)�+ contains the inverse image of
OutFC(Π2)� via the natural homomorphism OutFC(Π3) → OutFC(Π2) induced by
p12.

Proof. Assertion (i) follows immediately from the definitions, by observing that in
the situation of Definition 1.8 and Proposition 1.9, the action of the group of per-
mutations [i.e., automorphisms of the set {1, 2, 3}] on X3 preserves the subscheme
W ⊆ X3 of Definition 1.8, (i), and induces the automorphisms of W ∼= V ×k UP
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given by permuting [over V ] the three cusps of UP . Assertion (ii) follows from
assertions (i) and (iii) by taking the surjection “p12 : Π3 � Π2” that appears in
assertion (iii) to be the standard surjection Π4/1 � Π3/1. Thus, it remains to ver-
ify assertion (iii). To this end, let us assume that we have been given an element
β3 ∈ OutFC(Π3) that maps to an element β2 ∈ OutFC(Π2)�, and that we are in
the situation of Definition 3.1, with x ∈ X(k) taken to be the cusp that exhibits β2

as an element of OutFC(Π2)�. Let α2 ∈ AutFC(Π2), α3 ∈ AutFC(Π3) be elements
that induce, respectively, β2, β3; also, we suppose that α3 lifts α2. By Propositions
1.3, (iv) [the resp’d portion]; 1.7, (a), we may assume without loss of generality
that α2 stabilizes the subgroups (Πtripod

1
∼=) ΠEx

, IEx
, and DEx

of Π2, and that α2

induces an element βtripod
1 ∈ OutFC(Πtripod

1 )� ∼= OutFC(ΠEx
)�. Thus, it follows

from the non-resp’d portion of Proposition 1.3, (iv), that α3 stabilizes the Π3/2-
conjugacy classes of ΠBν

, ΠFx
[cf. the discussion of Definition 3.1, (iv), (vi)]. In

particular, α3 induces an element βtripod
2 ∈ OutFC(Πtripod

2 )S that lifts βtripod
1 [cf.

Definition 3.1, (vi)].

Now write ξ ∈ X2(X) for the cusp of X2 [relative to prlog1 : X log
2 → X log

1 ] that
corresponds to the cusp x ∈ X(k). Thus, ξ determines — by restricting to the
geometric generic fiber of prlog1 : X log

3 → X log
1 = X log — a minor verticial subgroup

ΠEξ
⊆ Π3/2. Moreover, since the restriction of the section ξ : X → X2 to x ∈ X(k)

determines a cusp ξ of UEx
, it follows that [for suitable choices within the various

Π3/2-conjugacy classes] ΠEξ
⊆ ΠBν

, and that this subgroup ΠEξ
of ΠBν

∼= Πtripod
2/1

forms a minor verticial subgroup Πtripod
Eξ

at ξ of Πtripod
2/1 . In particular, we conclude

from the resp’d portion of Proposition 1.3, (iv), that βtripod
2 ∈ OutFC(Πtripod

2 )S

stabilizes the Πtripod
2 -conjugacy class of Πtripod

Eξ
and, moreover, induces an element

∈ OutFC(ΠEξ
) ∼= OutFC(Πtripod

Eξ
) which, by Corollaries 1.12, (ii), (iii); 1.14, (i),

(iii), coincides — relative to any isomorphism Πtripod
Eξ

∼→ Πtripod
1 that arises from a

k-isomorphism UEξ

∼→ UT — with βtripod
1 ∈ OutFC(Πtripod

1 )�+ ∼= OutFC(ΠEx
)�+.

Thus, by Definition 1.11, (ii), we conclude that β3 ∈ OutFC(Π3)�+, as desired.
This completes the proof of assertion (iii), and hence of Corollary 3.4. ©

Section 4: The General Profinite Case

In the present §4, we derive the main result [cf. Theorem 4.1] of the present
paper from the various partial results obtained in §1, §2, §3.

Theorem 4.1. (Partial Profinite Combinatorial Cuspidalization) Let

X log → S

be a smooth log curve of type (g, r) [cf. §0] over S = Spec(k), where k is an
algebraically closed field of characteristic zero. Fix a set of prime numbers Σ
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which is either of cardinality one or equal to the set of all prime numbers. For n a
nonnegative integer, write X log

n for the n-th log configuration space associated
to X log [cf. [24], Definition 2.1, (i)], where we take X log

0
def= Spec(k);

Πn
def= πΣ

1 (X log
n )

for the maximal pro-Σ quotient of the fundamental group of the log scheme
X log
n [cf. §0; the discussion preceding [24], Definition 2.1, (i)];

OutFC(Πn) ⊆ Out(Πn)

for the subgroup of outer automorphisms α that satisfy the following conditions (1),
(2) [cf. Definition 1.1, (ii)]:

(1) α(H) = H for every fiber subgroup H ⊆ Πn [cf. Remark 1.1.2; [24],
Definition 2.3, (iii)].

(2) For m a nonnegative integer ≤ n, write Km ⊆ Πn for the fiber sub-
group that arises as the kernel of the projection obtained by “forgetting the
factors of Xn with labels > m”. Then α induces a bijection of the collec-
tion of conjugacy classes of cuspidal inertia groups contained in each
Km−1/Km [where m = 1, . . . , n] associated to the various cusps of the
geometric generic fiber of the projection X log

m � X log
m−1 obtained by “for-

getting the factor labeled m”. [Here, we regard the map Πm
∼= Πn/Km �

Πn/Km−1
∼= Πm−1 of quotients of Πn as the homomorphism that arises

by “forgetting, successively, the factors with labels > m and the factors
with labels > m− 1”.]

If the interior UX of X log is affine [i.e., r ≥ 1], then set n0
def= 2; if the interior

UX of X log is proper over k [i.e., r = 0], then set n0
def= 3. Then:

(i) The natural homomorphism

OutFC(Πn) → OutFC(Πn−1)

induced by the projection obtained by “forgetting the factor labeled n” is injective
if n ≥ n0 and bijective if n ≥ 5.

(ii) The image of the natural homomorphism OutFC(Πn) → OutFC(Πn−1) of
(i) contains the following two subsets [cf. Definition 1.11]: (a) OutFC(Πn−1)�+,
when n ≥ 2 [a set which is well-defined and nonempty only if (g, r) = (0, 3) or
n− 1 ≥ n0]; (b) the inverse image in OutFC(Πn−1) via the natural homomorphism
OutFC(Πn−1) → OutFC(Πn−2) of OutFC(Πn−2)�, when n ≥ 3 [a set which is
well-defined and nonempty only if either (g, r) = (0, 3) or n− 2 ≥ n0].

(iii) Let OutFC(Πn) → OutFC(Πn−1) be as in (i), where n ≥ n0. Let σ ∈
Out(Πn) be an outer automorphism that satisfies the following properties: (a) for
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every fiber subgroup H ⊆ Πn, σ(H) is a fiber subgroup; (b) σ(Kn−1) = Kn−1; (c)
σ induces a bijection of the collection of conjugacy classes of cuspidal inertia
groups contained in Kn−1; (d) the outer automorphism σ′ ∈ Out(Πn−1) deter-
mined by σ [cf. (b)] normalizes (respectively, commutes with) OutFC(Πn−1).
Then σ normalizes (respectively, commutes with) OutFC(Πn).

(iv) By permuting the various factors of X log
n , one obtains a natural inclusion

Sn ↪→ Out(Πn)

of the symmetric group on n letters into Out(Πn) whose image commutes with
OutFC(Πn) if n ≥ n0 and normalizes OutFC(Πn) if r = 0 and n = 2.

Proof. First, we consider the injectivity portion of assertion (i). Consider the
natural isomorphisms

Πn
∼→ Kn−2

out
� Πn−2; Πn−1

∼→ (Kn−2/Kn−1)
out
� Πn−2

[cf. §0; Remark 1.1.1], together with the interpretation of Πn/n−2 = Kn−2 �
Kn−2/Kn−1 = Πn−1/n−2 as the “Π2 � Π1” [i.e., the projection that arises by
forgetting the factor labeled 2] associated to an “X log” of type (g, r+n−2) [cf. [24],
Proposition 2.4, (i)]. [Here, we note that one verifies easily that this “interpretation”
is compatible with the definition of the various “OutFC(−)’s” involved.] Now the
above natural isomorphisms allow one to reduce the injectivity portion of assertion
(i) to the case n = 2, r ≥ 1, which follows immediately from Corollaries 1.12, (ii);
2.3, (ii) [cf. also Remark 2.1.1]. This completes the proof of the injectivity portion
of assertion (i).

Next, we consider assertion (iii). Let α ∈ OutFC(Πn). Write α′ for the image
of α in OutFC(Πn−1); ασ

def= σ · α · σ−1; α′
σ′

def= σ′ · α′ · (σ′)−1. Then it follows
immediately from property (a) that ασ is F-admissible and from properties (b),
(c), (d) that ασ is C-admissible. Thus, ασ ∈ OutFC(Πn). If, moreover, it holds
that α′ = α′

σ′ , then it follows from the injectivity portion of assertion (i) that
α = ασ. This completes the proof of assertion (iii).

Next, we consider assertion (iv). When n = 2, assertion (iv) follows immedi-
ately from Proposition 1.6, (iii); Corollaries 1.12, (iii); 2.3, (iii) [cf. also Remark
2.1.1]. Note that when n ≥ 3, by applying the natural isomorphism

Πn
∼→ Kn−2

out
� Πn−2

[cf. §0; Remark 1.1.1], together with the interpretation of Πn/n−2 = Kn−2 as the
“Π2” associated to an “X log” of type (g, r + n − 2) [cf. [24], Proposition 2.4, (i)],
we thus conclude from “assertion (iv) for n = 2” [whose proof has already been
completed] that OutFC(Πn) commutes with the permutation outer automorphism
σ ∈ Out(Πn) that arises from the permutation ((n− 1) n) of {1, 2, . . . , n} [i.e., the
permutation that switches n and n−1 and fixes all other elements of {1, 2, . . . , n}].
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Now we apply induction on n. When UX is affine, let us observe that [by the
induction hypothesis] every permutation outer automorphism σ ∈ Out(Πn) that
arises from a permutation of {1, 2, . . . , n} that fixes n satisfies the properties (a),
(b), (c), (d) of assertion (iii) in the resp’d case. Thus, when UX is affine, the
induction step [i.e., the derivation of “assertion (iv) for n” from “assertion (iv) for
n−1”] follows from assertion (iii), together with the fact that the permutation group
of {1, 2, . . . , n} is generated by “((n−1) n)” and the subgroup of permutations that
fix n. If UX is proper and n ≥ 4, then the induction step [i.e., the derivation of
“assertion (iv) for n” from “assertion (iv) for n−1”] follows by a similar argument.
Thus, it remains to verify the induction step when UX is proper and n = 3. To
this end, let us first observe that, as discussed above, OutFC(Π3) commutes with
[the permutation outer automorphism that arises from the permutation of {1, 2, 3}
given by] (23). Moreover, by applying assertion (iii) in the non-resp’d case to [the
permutation outer automorphism that arises from the permutation of {1, 2, 3} given
by] (12), we conclude that (12) normalizes OutFC(Π3). Thus, by conjugating by
(12), we conclude that OutFC(Π3) commutes with (13). Now since the group of
permutations of {1, 2, 3} is generated by (12), (13), we conclude that OutFC(Π3)
commutes with all permutation outer automorphisms. This completes the proof of
assertion (iv).

Next, we consider assertion (ii). First, let us observe that when (g, r) = (0, 3)
and n = 2, assertion (ii) for the subset of (a) is a tautology [cf. Definition 1.11,
(i)]; when (g, r) = (0, 3) and n = 3, assertion (ii) for the subset of (b) may be
reduced, in light of the inclusion OutFC(Π2)S ⊆ OutFC(Π2)�+ [cf. Corollaries
1.12, (ii), (iii); 1.14, (i), (iv)], to assertion (ii) for the subset of (a) when n = 3.
Next, let us observe that when n ≥ 4, by the definition of “�” [cf. Definition 1.11,
(ii)], every element ∈ OutFC(Πn−1/n−4) [where we recall that Πn−1/n−4 is the “Π3”
associated to an “X log” of type (g, r+n−4)] that is induced, relative to the inclusion
Πn−1/n−4 ↪→ Πn−1, by an element ∈ OutFC(Πn−1) of the subset of (b) maps, via
the natural homomorphism OutFC(Πn−1/n−4) → OutFC(Πn−2/n−4) [obtained by
“forgetting the factor labeled n− 1”], to an element of OutFC(Πn−2/n−4)�, hence,
by Corollary 3.4, (iii), is contained in OutFC(Πn−1/n−4)�+; but, by the definition
of “�+” [cf. Definition 1.11, (ii)], this implies that every element of the subset of
(b) is contained in OutFC(Πn−1)�+. Thus, to complete the proof of assertion (ii), it
suffices to verify assertion (ii) for the subset of (a) in the case of n ≥ 3. On the other

hand, when n ≥ 3, by applying the natural isomorphisms Πn
∼→ Πn/n−3

out
� Πn−3,

Πn−1
∼→ Πn−1/n−3

out
� Πn−3 [cf. the proof of the injectivity portion of assertion

(i)], together with the injectivity portion of assertion (i) [which is necessary in order
to conclude the compatibility of liftings, relative to the natural homomorphism
OutFC(Πn/n−3) → OutFC(Πn−1/n−3), with the respective outer actions of Πn−3],
to complete the proof of assertion (ii), we conclude that it suffices to verify assertion
(ii) for the subset of (a) in the case of n = 3. But this is precisely the content of
Corollary 3.3. This completes the proof of assertion (ii).

Finally, we consider the surjectivity [i.e., bijectivity] portion of assertion (i)
for n ≥ 5. First, let us observe that by Lemma 2.4, to complete the proof of
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assertion (i), it suffices to verify that the image of the natural homomorphism
OutFC(Πn) → OutFC(Πn−1) of assertion (i) contains the subset OutFC(Πn−1)cusp ⊆
OutFC(Πn−1). Next, let us observe that by assertion (iv) and Remark 1.1.5, ev-
ery element ∈ OutFC(Πn−1/n−5) [where we recall that Πn−1/n−5 is the “Π4” as-
sociated to an “X log” of type (g, r + n − 5)] that is induced, relative to the in-
clusion Πn−1/n−5 ↪→ Πn−1, by an element ∈ OutFC(Πn−1)cusp is contained in
OutFCP(Πn−1/n−5)cusp, hence, by Corollary 3.4, (ii), in OutFC(Πn−1/n−5)�+. But
this implies that OutFC(Πn−1)cusp = OutFC(Πn−1)�+ [cf. Definition 1.11, (ii)].
Thus, in summary, to complete the proof of assertion (i), it suffices to verify that
the image of the natural homomorphism OutFC(Πn) → OutFC(Πn−1) of assertion
(i) contains the subset OutFC(Πn−1)�+ ⊆ OutFC(Πn−1). But this follows from
assertion (ii) [cf. the subset of (a)]. This completes the proof of assertion (i). ©

Remark 4.1.1. The argument applied to verify Theorem 4.1, (iv), in the proper
case suggests that even if one cannot verify the injectivity of the homomorphism
OutFC(Π2) → OutFC(Π1) in the proper case, it may be possible to verify the
injectivity of the homomorphism OutFC(Π3) → OutFC(Π1) [i.e., induced by the
projection obtained by “forgetting the factors labeled 2, 3”] in the proper case.

Remark 4.1.2. In the pro-l case [i.e., the case where Σ is of cardinality one],
a number of results related to Theorem 4.1, (i), have been obtained by various
authors.

(i) In [10], Theorem 1 [cf. also [8], which is discussed further in Remark 4.2.1,
(ii), below], a similar injectivity result to that of Theorem 4.1, (i), is obtained in
the pro-l case for outer automorphisms satisfying certain conditions — i.e., the
conditions “(σ1), (σ2)” of [10], Theorem 1. It is immediate [cf. Proposition 1.3,
(vii)] that outer automorphisms lying in the kernel of the homomorphism in question
which satisfy these conditions “(σ1), (σ2)” are FC-admissible. Thus, [at least when
the condition of hyperbolicity 2g − 2 + r > 0 is satisfied] [10], Theorem 1, may be
obtained as a consequence of Theorem 4.1, (i).

(ii) In [29], a filtered pro-l injectivity result [cf. [29], Theorem 4.3] is obtained
for a certain filtration on a subgroup Γ(n)

g,r ⊆ Out(Πn) [where Γ(n)
g,r is as in [29], (2.11)

— except with “r” and “n” reversed!]. It follows immediately from the conditions
used to define Γ(n)

g,r [cf. [29], (2.10), (2.11)] that

Γ(n)
g,r = OutQS(Πn) = OutFC(Πn)cusp

[cf. Proposition 1.3, (vii)]. In particular, the injectivity of Theorem 4.1, (i), in the
pro-l case may also be thought of as yielding a new proof of the injectivity that
holds as a consequence of the “filtered injectivity” of [29], Theorem 4.3.

(iii) In the context of (ii), graded pro-l surjectivity results are obtained in [32].
Related results may be found in [9].



56 SHINICHI MOCHIZUKI

Remark 4.1.3. The injectivity of the restriction of the homomorphism of Theo-
rem 4.1, (i), to an “image of Galois” ⊆ OutFC(Πn) that arises from scheme theory
is precisely the content of [14], Theorem 2.2. Indeed, it was precisely the goal of
attaining a more abstract, combinatorial understanding of the theory of [14] that
motivated the author to develop the theory of the present paper. Also, we ob-
serve that the remaining portion of [14], Theorem 2.2 — involving related outer
actions on Πtripod — follows immediately from the existence of the natural outer
homomorphism of Corollary 1.10, (iii).

Remark 4.1.4.

(i) Observe that the various “Πn” that arise from different “X log’s” of the same
type (g, r) are always isomorphic, in a fashion that is compatible with the various
fiber subgroups and cuspidal inertia groups of subquotients. Indeed, this follows
immediately [cf. the various “specialization isomorphisms” discussed in §0] from
the well-known fact [cf., [3]] that the moduli stack Mg,r [cf. §0] is smooth, proper,
and geometrically connected over Z.

(ii) Although we have formulated Theorem 4.1, (i), in terms of outer automor-
phisms, it is a routine exercise — in light of the observation of (i) — to reformulate
Theorem 4.1, (i), in terms of outer isomorphisms, as is often of interest in applica-
tions to anabelian geometry.

Remark 4.1.5. In [7], a group-theoretic construction is given for the geometrically
pro-l arithmetic fundamental groups of configuration spaces of arbitrary dimension
from the geometrically pro-l arithmetic fundamental group of a proper hyperbolic
curve over a finite field. This construction is performed by considering various Lie
versions of these arithmetic fundamental groups of configuration spaces of arbitrary
dimension. On the other hand, by applying the injectivity portion of Theorem 4.1,

(i) [cf. the argument involving “
out
� ” given in the proof of Theorem 4.1, (ii)], one

may simplify the argument of [7]: That is to say, instead of working with Lie versions
of geometrically pro-l arithmetic fundamental groups of configuration spaces of
arbitrary dimension [associated to a proper hyperbolic curve over a finite field],
one may instead restrict oneself to working with Lie versions of geometrically pro-l
arithmetic fundamental groups of two-dimensional configuration spaces [associated
to a [not necessarily proper] hyperbolic curve over a finite field]. [We leave the
routine details to the interested reader.] This reduction to the case of Lie algebras
associated to two-dimensional configuration spaces results in a substantial reduction
of the book-keeping involved.

The following result allows one to relate the theory of the present paper to the
work of Nakamura and Harbater-Schneps [cf. [26], [5]].

Corollary 4.2. (Partial Profinite Combinatorial Cuspidalization for
Tripods) In the notation of Theorem 4.1: Suppose further that X log is a tripod.
Then, for n ≥ 1:
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(i) We have:

OutFC(Πn)S = OutFCS(Πn) = OutFC(Πn)� ⊆ OutFC(Πn)cusp

if n = 1;

OutFC(Πn)S = OutFCS(Πn) ⊆ OutFC(Πn)�+ ⊆ OutFC(Πn)cusp

if n ≥ 2 [cf. Definitions 1.1, (vi); 1.11, (i), (ii)].

(ii) The natural homomorphism

OutFCS(Πn) → OutFCS(Πn−1)

induced by the projection obtained by “forgetting the factor labeled n” is injective
if n ≥ 2 and bijective if n ≥ 3.

Proof. First, we consider assertion (i). When n = 1, assertion (i) follows immedi-
ately from Definitions 1.1, (vi); 1.11, (i). Thus, we may assume that n ≥ 2. Then
the fact that OutFC(Πn)S = OutFCS(Πn) follows formally from Corollary 1.14, (i);
Theorem 4.1, (i), (iv). The fact that OutFCS(Πn) ⊆ OutFC(Πn)�+ follows from
Corollary 1.14, (iv). This completes the proof of assertion (i).

Now the injectivity portion of assertion (ii) follows from the injectivity portion
of Theorem 4.1, (i); in light of this injectivity, the bijectivity portion of assertion
(ii) follows from assertion (i) and Theorem 4.1, (ii) [cf. the subset of (a)]. This
completes the proof of assertion (ii) and hence of Corollary 4.2. ©

Remark 4.2.1.

(i) Suppose that we are in the situation of Corollary 4.2, and that Σ is the set
of all prime numbers. Then various injectivity and bijectivity results are obtained
by Nakamura and Harbater-Schneps in [26], [5] concerning the subgroup

Out
n+3 ⊆ Out(Πn)

[where n ≥ 1]. This subgroup is defined in [5], §0.1, Definition, by means of two
conditions “(i)” [i.e., “quasi-speciality”], “(ii)” [i.e., “symmetry”]. From the point
of view of the theory of the present paper, these two conditions amount to the
condition on α ∈ Out(Πn) that “α ∈ OutQS(Πn), and, moreover, α commutes with
all of the outer symmetry permutations” — i.e.,

Out
n+3 = OutFCS(Πn)

[cf. Proposition 1.3, (vii)].

(ii) In [5], it is shown that the natural homomorphism

Out
n+3 → Out
n+2
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is injective if n ≥ 2 and bijective if n ≥ 3 [cf. [5], §0.1, Corollary]. The injectivity
portion of this result of [5] is derived [cf. [5], Proposition 8] from the injectivity
obtained in [26], Lemma 3.2.2, and may be regarded as a profinite version of an
earlier pro-l result due to Ihara [cf. [8]] — cf. the discussion of [5], §0.2. On
the other hand, unlike the case with [5], the approach of [8] allows one to treat,
in essence, the full group OutQS(Πn) [i.e., not just OutFCS(Πn) = Out
n+3] in the
pro-l case. In light of the discussion of (i), the proofs given in the present paper
of Theorem 4.1, (i), and Corollary 4.2, (ii), may be regarded as alternate proofs of
these results of [8] and [5].

(iii) The strong symmetry assumption imposed on elements of OutFCS(Πn)
suggests that there is a substantial gap between injectivity or bijectivity results for
OutFCS(Πn) and injectivity or bijectivity results for OutFC(Πn). This gap accounts
for the lack of the need to invoke such results as the “combinatorial version of the
Grothendieck Conjecture” [i.e., [20], Corollary 2.7, (iii)] in the proofs of [26], [5].

Section 5: The Discrete Case

In the present §5, we discuss a discrete analogue [cf. Corollary 5.1] of Theo-
rem 4.1. One important aspect of this discrete analogue is that it is a relatively
easy consequence of the well-known theorem of Dehn-Nielsen-Baer [cf., e.g., [13],
Theorem 2.9.B], together with the injectivity asserted in Theorem 4.1, (i), that the
discrete analogue of the homomorphism of Theorem 4.1, (i), is surjective.

In the following, we use the notation “πtop
1 (−)” to denote the [usual] topological

fundamental group of the connected topological space in parentheses.

Corollary 5.1. (Partial Discrete Combinatorial Cuspidalization) Let X
be a topological surface of type (g, r) [i.e., the complement of r distinct points
in a compact oriented topological surface of genus g]. For integers n ≥ 1, write Xn
for the complement of the diagonals in the direct product of n copies of X ;

Πn
def= πtop

1 (Xn)

for the [usual topological] fundamental group of Xn; Π̂n for the profinite com-
pletion of Πn;

OutFC(Πn) ⊆ Out(Πn) (respectively, OutF(Πn) ⊆ Out(Πn))

for the subgroup of outer automorphisms α that satisfy the following condition(s)
(1), (2) (respectively, (1)):

(1) α(H) = H for every fiber subgroup H ⊆ Πn [cf. [24], Definition 7.2,
(ii); [24], Corollary 7.4].
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(2) For m a nonnegative integer ≤ n, write Km ⊆ Πn for the fiber subgroup
that arises as the kernel of the projection obtained by “forgetting the factors
of Xn with labels by > m”; Πb/a

def= Ka/Kb for a, b ∈ {0, 1, . . . , n} such
that a ≤ b. Then α induces a bijection of the collection of conjugacy
classes of cuspidal inertia groups contained in each Πm/m−1 [where
m = 1, . . . , n] associated to the various cusps of the topological surfaces
that arise as fibers of the projection Xm � Xm−1 obtained by “forgetting
the factor labeled m”. [Here, we regard the map Πm

∼= Πn/Πn/m �
Πn/Πn/m−1

∼= Πm−1 of quotients of Πn as the homomorphism that arises
by “forgetting, successively, the factors with labels > m and the factors
with labels > m − 1”.] We refer to Definition 5.2 below for more details
on the notion of an “inertia group”.

If r ≥ 1 — i.e., X is non-compact — then set n0
def= 2; if r = 0 — i.e., X is

compact — then set n0
def= 3. Then:

(i) The natural homomorphisms

Πn → Π̂n; OutF(Πn) → OutF(Π̂n)

are injective for n ≥ 1. Here, the injectivity of the first homomorphism is equiva-
lent to the assertion that Πn is residually finite.

(ii) The natural homomorphism

OutFC(Πn) → OutFC(Πn−1)

induced by the projection obtained by “forgetting the factor labeled n” is bijective
if n ≥ n0 and surjective if n = 2.

(iii) Let OutFC(Πn) → OutFC(Πn−1) be as in (ii), n ≥ n0. Let σ ∈ Out(Πn)
be an outer automorphism that satisfies the following properties: (a) for every fiber
subgroup H ⊆ Πn, σ(H) is a fiber subgroup; (b) σ(Kn−1) = Kn−1; (c) σ induces
a bijection of the collection of conjugacy classes of cuspidal inertia groups
contained in Kn−1; (d) the outer automorphism σ′ ∈ Out(Πn−1) determined by
σ [cf. (b)] normalizes (respectively, commutes with) OutFC(Πn−1). Then σ

normalizes (respectively, commutes with) OutFC(Πn).

(iv) By permuting the various factors of X log
n , one obtains a natural inclusion

Sn ↪→ Out(Πn)

of the symmetric group on n letters into Out(Πn) whose image commutes with
OutFC(Πn) if n ≥ n0 and normalizes OutFC(Πn) if r = 0 and n = 2.

Proof. In the following, we shall write

AutFC(Πn)
def= Aut(Πn) ×Out(Πn) OutFC(Πn)

AutF(Πn)
def= Aut(Πn) ×Out(Πn) OutF(Πn)
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for n ≥ 1. Now let us consider assertion (i). The fact that Πn is residually finite
is well-known [cf., e.g., [24], Proposition 7.1, (ii)]. Thus, it remains to verify the
injectivity of the natural homomorphism OutF(Πn) → OutF(Π̂n). When n = 1,
the injectivity of the natural homomorphism Out(Π1) → Out(Π̂1) is the content
of [2], Lemma 3.2.1, when X is non-compact; when X is compact, the injectivity of
this homomorphism is implicit in the proofs of [4], Theorems 1, 3. This completes
the proof of assertion (i) when n = 1. Now “assertion (i) for arbitrary n” follows
by applying induction on n, together with the natural isomorphism

Πn
∼→ K1

out
� Π1

[cf. §0; Remark 1.1.1] and the evident discrete analogue of the interpretation of
Πn/1 = K1 given in [24], Proposition 2.4, (i), which allows one to apply the in-
duction hypothesis to K1 [as well as to Π1]. Indeed, if α ∈ AutF(Πn) induces an
inner automorphism of Π̂n, then the automorphism α1 ∈ AutF(Π1) determined
by α induces an inner automorphism of Π̂1. Thus, by the induction hypothesis,
α1 is inner, so by replacing α with the composite of α with an appropriate inner
automorphism, we may assume that α1 is the identity. Then α induces an auto-
morphism αK ∈ AutF(K1) which is compatible with the outer action of Π1 on K1.
Moreover, αK arises [relative to the inclusion K1 ⊆ Πn ↪→ Π̂n] from conjugation
by an element γ ∈ Π̂n whose image in Π̂1 induces [by conjugation] the identity
automorphism of Π1 (↪→ Π̂1), hence also the identity automorphism of Π̂1. Since
Π̂1 is center-free [cf. Remark 1.1.1], we thus conclude that γ lies in the closure of
the image of K1 in Π̂n [which is naturally isomorphic to the profinite completion
of K1 — cf. [24], Proposition 7.1, (i); [24], Proposition 2.2, (i)]. Thus, by applying
the induction hypothesis to K1, we conclude that αK is inner, hence [by applying

the natural isomorphism Πn
∼→ K1

out
� Π1] that α is inner. This completes the

proof of assertion (i).

Next, we consider assertion (ii). First, let us recall that by the well-known
theorem of Dehn-Nielsen-Baer [cf., e.g., [13], Theorem 2.9.B] every automorphism
α ∈ AutFC(Π1) arises from a homeomorphism [or even a diffeomorphism!] αX :
X ∼→X . Since αX then induces a homeomorphism Xn ∼→Xn for every n ≥ 1, we thus
obtain elements αn ∈ Aut(Πn) that [as is easily verified] belong to AutFC(Πn) and
lift α [relative, say, to the projection Πn � Π1 determined by the factor labeled 1].
In particular, the corresponding natural homomorphisms OutFC(Πn) → OutFC(Π1)
are surjective for n ≥ 1.

Next, let us observe that the injectivity of OutFC(Πn) → OutFC(Πn−1) for
n ≥ n0 follows formally from the injectivity of OutFC(Πn) → OutFC(Π̂n) [cf. as-
sertion (i)] and the injectivity of Theorem 4.1, (i). In light of the surjectivity of
OutFC(Πn) → OutFC(Π1), we thus conclude that if X is non-compact [so n0 = 2],
then OutFC(Πn) → OutFC(Πn−1) is bijective for n ≥ 2. This completes the proof
of assertion (ii) for non-compact X .

Next, let us consider the case where X is compact. Then one may verify the
surjectivity of OutFC(Πn) → OutFC(Πn−1) for n ≥ 3 by arguing as follows. Let
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β ∈ AutFC(Πn−1), where we think of Πn−1 as “Πn/Πn/n−1 = Πn/Kn−1”. Then
β determines automorphisms βK ∈ AutFC(K1/Kn−1), β1 ∈ AutFC(Π1) [where we
think of Π1 as “Πn/Πn/1 = Πn/K1”] which are compatible with the natural outer
action of Π1 on K1/Kn−1. Then by applying assertion (ii) in the non-compact case
[whose proof has already been completed] to K1, we conclude that OutFC(K1) →
OutFC(K1/Kn−1) is bijective. Let αK ∈ AutFC(K1) be a lifting of βK . Note that
the injectivity of OutFC(K1) → OutFC(K1/Kn−1) [together with the compatibility
of β1, βK with the natural outer action of Π1 on K1/Kn−1] implies that β1, αK
are compatible with the natural outer action of Π1 on K1. Thus, by applying the

natural isomorphism Πn
∼→ K1

out
� Π1 [cf. §0; Remark 1.1.1], we conclude that

αK , β1 determine an automorphism α ∈ Aut(Πn) which [as is easily verified, in
light of the residual finiteness of assertion (i), by applying Proposition 1.2, (i),
(iii), to Π̂n] belongs to AutFC(Πn). This completes the proof of the surjectivity of
OutFC(Πn) → OutFC(Πn−1) for n ≥ 3, and hence of assertion (ii).

The proof of assertion (iii) as a consequence of assertion (ii) is entirely similar
to the proof of Theorem 4.1, (iii) [as a consequence of Theorem 4.1, (i)]. Finally, we
consider assertion (iv). When r = 0 and n = 2, assertion (iv) follows immediately
from the evident discrete analogue of Proposition 1.6, (i), (a). Thus, it remains to
verify that OutFC(Πn) ⊆ Out(Πn) commutes with the image of Sn when n ≥ n0.
To this end, let σ ∈ Out(Πn) be an element of the image of Sn; α ∈ OutFC(Πn);
ασ

def= σ · α · σ−1 ∈ Out(Πn). Then one verifies immediately that ασ ∈ OutF(Πn).
Moreover, by Theorem 4.1, (iv), the images of α and ασ in OutF(Π̂n) coincide.
Thus, the fact that α = ασ follows from the injectivity of OutF(Πn) → OutF(Π̂n)
[cf. assertion (i)]. This completes the proof of assertion (iv). ©

Remark 5.1.1. There is a partial overlap between the content of Corollary 5.1
above and Theorems 1, 2 of [12].

Definition 5.2. Let n ≥ 2 be an integer.

(i) Write R for the underlying topological space of the topological field of real
numbers; γ2 ⊆ R2 = R × R for the unit circle; γn ⊆ Rn = R × . . . × R [i.e., the
product of n copies of R] for the image of the embedding γ2 ⊆ R2 ↪→ Rn obtained
by taking the first n− 2 coordinates to be zero.

(ii) Let N be a connected topological manifold of dimension n; M ⊆ N a
connected submanifold of dimension n − 2; P def= N\M. Thus, for each point
x ∈ M, there exists an open neighborhood U ⊆ N of x in U , together with an open
immersion U ↪→ Rn that maps x to the origin of Rn, contains γn in its image, and
induces an open immersion U ⋂ M ↪→ Rn−2 (⊆ Rn) [where we think of Rn−2 as
the subspace of Rn whose last two coordinates are zero]. In particular, we obtain
an immersion γn ↪→ P ⊆ N ; write

IM ⊆ πtop
1 (P)
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for the image of the homomorphism (Z ∼=) πtop
1 (γn) → πtop

1 (P) induced by this
immersion γn ↪→ P (⊆ N ). One verifies easily that IM is well-defined up to πtop

1 (P)-
conjugacy and independent of the choice of x, U , and the open immersion U ↪→ Rn.
We shall refer to IM as the inertia group associated to M in πtop

1 (P).

Corollary 5.3. (Quasi-Speciality) In the situation of Corollary 5.1: Suppose
that X is obtained as the complement of r points — i.e., “cusps” — of a compact
oriented topological surface Z. Write Pn for the product Z × . . .×Z of n copies of
Z; D∗

n for the set of connected submanifolds of codimension 2 of Pn given by the
1
2
n(n−1) diagonals and the n · r fibers of cusps via the n projection maps Pn → Z.

For each δ ∈ D∗
n, write

X δ
n

def= Pn \
( ⋃
ε �=δ

ε
)
⊆ Pn

— where the union ranges over elements ε �= δ of D∗
n;

Iδ ⊆ Πn

for the inertia group [well-defined up to Πn-conjugacy] determined by the sub-
manifold δ

⋂ X δ
n ⊆ X δ

n [where we note that Xn = X δ
n\(δ

⋂ X δ
n)]. Write

OutQS(Πn) ⊆ Out(Πn)

— where “QS” stands for “quasi-special” [cf. Proposition 1.3, (vii)] — for the
subgroup of outer automorphisms that stabilize the conjugacy class of each inertia
group Iδ, for δ ∈ D∗

n;
OutFC(Πn)cusp ⊆ OutFC(Πn)

for the subgroup of outer automorphisms that induce, via the surjection Πn � Π1

obtained by “forgetting the factors with labels > 1”, outer automorphisms of Π1 that
stabilize each of the conjugacy classes of the inertia groups of the cusps. Then:

(i) We have: OutQS(Πn) = OutFC(Πn)cusp.

(ii) The natural homomorphism of Corollary 5.1, (ii), restricts to a homomor-
phism

OutQS(Πn) → OutQS(Πn−1)

which is bijective if n ≥ n0 [where n0 is as in Corollary 5.1] and surjective if
n = 2.

Proof. First, we consider assertion (i). We begin by observing that it follows imme-
diately from the definitions [together with well-known facts concerning the relation-
ship between topological and étale fundamental groups] that profinite completion
induces a homomorphism OutQS(Πn) → OutQS(Π̂n) ⊆ OutF(Π̂n) [cf. Proposition
1.3, (vii)]. Thus, it follows immediately from the residual finiteness of Corollary
5.1, (i), that OutQS(Πn) ⊆ OutF(Πn). In particular, the fact that OutQS(Πn) ⊆
OutFC(Πn)cusp follows immediately from the definition of “OutQS(−)” [cf. the
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proof of Proposition 1.3, (vii)]. Now it remains to verify that OutFC(Πn)cusp ⊆
OutQS(Πn). To this end, let us first observe that if X is compact, then every Iδ
[where δ ∈ D∗

n] lies in the kernel of the surjection Πn � Π1 obtained by “forgetting
the factors with labels > 1”; in particular, [by thinking of Ker(Πn � Π1) as a
“Πn−1” that arises for some topological surface of type (g, 1)] we conclude that it
suffices to verify the inclusion OutFC(Πn)cusp ⊆ OutQS(Πn) for non-compact X .
Thus, let us suppose that X is non-compact. Then by Corollary 5.1, (ii), we have
a bijection

OutFC(Πn)cusp ∼→ OutFC(Π1)cusp

— i.e., [cf. the proof of Corollary 5.1, (ii)] every element α ∈ OutFC(Πn)cusp

arises from a homeomorphism αX : X ∼→ X . Moreover, it follows immediately from
the superscript “cusp” that this homeomorphism extends to a homeomorphism
αZ : Z ∼→ Z that fixes each of the cusps. In particular, αZ induces compatible self-
homeomorphisms of Xn ⊆ X δ

n ⊆ Pn for each δ ∈ D∗
n. Thus, it follows immediately

from the definitions that α ∈ OutQS(Πn). This completes the proof of assertion (i).
Finally, assertion (ii) follows immediately from assertion (i) and Corollary 5.1, (ii).
©

Remark 5.3.1. Suppose that (g, r) = (0, 3). Then the injectivity portion of Corol-
lary 5.3, (ii), is [essentially] the content of [8], §1.2, “The Injectivity Theorem (i)”.
By applying this injectivity, together with a classical result of Nielsen to the effect
that OutQS(Π1) = {±1} [cf. [8], §6.1; here, the element of OutQS(Π1) correspond-
ing to “−1” is the automorphism induced by complex conjugation], one obtains that
OutQS(Πn) = {±1} for all n ≥ 2 [cf. [8], §1.2, “The Vanishing Theorem”].
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